Окислительные волокна как тренировать. Типы мышц

Мышечное волокно (миоцит) - основная структурная и функциональная единица соматической мышечной ткани; третья стадия и результат гистогенеза. Длина мышечного волокна часто совпадает с длиной мышцы, в состав которого оно входит.

Основные классификации мышечных волокон:

  • Белые и красные мышечные волокна;
  • Быстрые и медленные мышечные волокна;
  • Гликолитические, промежуточные и окислительные мышечные волокна;
  • Высокопороговые и низкопороговые мышечные волокна.

Белые и красные мышечные волокна.

Первая классификация – по цвету. Это классификация по наличию пигмента миоглобина в саркоплазме мышечного волокна. Миоглобин красного цвета и он участвует в переносе кислорода к мышечной клетке. Чем больше кислорода требуется клетке, тем больше поступает миоглобина — волокно более красное. Когда меньше кислорода — волокно более светлое, от чего –белое. Также красные мышечные волокна имеет большее число митохондрий, чем белые, из-за большого потребления кислорода.

Белые мышечные волокна:

  • Миоглобина – мало.
  • Митохондрий – мало.
  • Потребление кислорода – малое.

Красные мышечные волокна:

  • Миоглобина – много.
  • Митохондрий – много.
  • Потребление кислорода – большое.

Быстрые и медленные мышечные волокна.

Вторая классификация — по скорости сокращения. Быстрые и медленные мышечные волокна классифицируются по скорости сокращения и активности фермента АТФ-азы. Фермент АТФ-аза участвует в образовании АТФ и соответственно в сокращении мышцы. Когда чем более активный фермент, тем быстрей синтезируется АТФ и мышца снова готова сокращаться.

Быстрые мышечные волокна:

  • Скорость сокращения мышечного волокна более высокая.
  • Активность фермента АТФ-аза более высокая.

Медленные мышечные волокна:

  • Скорость сокращения мышечного волокна более низкая.
  • Активность фермента АТФ-аза низкая.

Гликолитические, промежуточные и окислительные мышечные волокна.

Третья классификация – по энергообеспечению. Для получения энергии мышечные волокна используют жирные кислоты (жиры) и глюкозу (углеводы). Жирные кислоты с помощью окисления организм превращает в АТФ с помощью окисления. Глюкозу с помощью анаэробного и аэробного гликолиза также превращает в АТФ. Поэтому в организме существует три вида различных мышечных волокон, которые используют преимущественно один из видов энергообеспечения.

Окислительные мышечные волокна (ОМВ):

  • Основной источник энергии – жирные кислоты.
  • Энергообеспечение – окисление.

Промежуточные мышечные волокна (ПМВ):

  • Основной источник энергии – жирные кислоты, глюкоза.
  • Энергообеспечение – окисление, гликолиз.
  • Количество митохондрий – среднее количество.

Гликолитические мышечные волокна (ГМВ):

  • Основной источник энергии – глюкоза.
  • Энергообеспечение – гликолиз, преимущественно анаэробный.

Отдельно следует поговорить о ПМВ. Данный тип мышечных волокон очень хорошо адаптируется к нагрузке, в отличие от ОМВ и ГМВ. При длительных тренировках данные мышечные волокна могут приобретать больше признаков ОМВ или ГМВ. К примеру, если тренировать выносливость (бегать марафоны и топу подобное), в таком случае практически все ПМВ станут ОМВ, за счет увеличения количества митохондрий. При силовых тренировках МПВ перестраиваться в ГМВ, адаптируясь под соответственный вид тренировок.

Высокопороговые и низкопороговые мышечные волокна.

Четвертая классификация – по порогу возбудимости двигательных единиц (ДЕ). Двигательная единица состоит из: мотонейрона и мышечного волокна. Сокращение мышцы происходит под воздействием нервных импульсов, которые проводят нервные клетки от головного мозга к мышце, давая ей команду сокращаться.

Высокопороговые мышечные волокна:

  • Порог возбудимости – высокий (сокращаются при сильном импульсе, когда очень тяжело).
  • Скорость передачи нервного импульса – высокая.
  • Аксон с миелиновой оболочкой.

Низкопороговые мышечные волокна:

  • Порог возбудимости – низкий (сокращаются при слабом импульсе.).
  • Скорость передачи нервного импульса – низкая.

Объединение классификаций.

Белые быстрые высокопороговые гликолитические мышечные волокна (далее вГМВ):

  • Цвет – белый.
  • Скорость – большая. Основное энергообеспечение – анаэробный гликолиз.
  • Порог возбудимости – высокий.
  • Аксон – с миелиновой оболочкой.
  • Количество митохондрий – мало. Количество мышечных волокон в организме – заложено генетикой (это не факт, так как сейчас есть теория, по которой происходит миелинизация мотонейрона от тренировочной нагрузки).

Данный вид мышечных волокон, у людей, не занимающихся спортом, практически некогда не принимает участие в сокращении мышцы. Данные мышечные волокна включаются в работу только в экстремальных условиях на очень короткое время. У спортсменов, занимающихся анаэробными видами спорта данные мышечные волокна активно принимают участие в сокращении при пиковых нагрузках (90-100% от ПМ, обычно это 1-3 повтора).

Белые быстрые гликолитические мышечные волокна (далее ГМВ):

  • Цвет – белый.
  • Скорость – большая.
  • Основное энергообеспечение – анаэробный гликолиз, частично аэробный.
  • Порог возбудимости – средний (ниже вГМВ, выше ПМВ).
  • Аксон без миелиновой оболочки.
  • Количество митохондрий – мало.
  • Количество мышечных волокон в организме – различное (ПМВ превращаются в ГМВ при силовых тренировках).
  • ГМВ основа всей мышечной массы. Даже если у человека преобладают ОМВ по количеству, весь основной объем мышцы будет за счет именно ГМВ, так как эти мышечные волокна намного больше в объеме всех остальных. ГМВ включаются в работу практически во всех силовых упражнениях.

Промежуточные (могут быть как белые, так и красные) мышечные волокна (далее ПМВ).

  • Цвет – белый, красный.
  • Скорость сокращения – низкая, высокая (некоторые исследования подтверждают, что активность фермента АТФ-азы не может меняться от тренировки, потому возможно ПМВ, которые превратились в ГМВ остаются медленными).
  • Основное энергообеспечение – анаэробный гликолиз, аэробный гликолиз, окисление.
  • Порог возбудимости – средний (ниже вГМВ, ГМВ, выше ОМВ).
  • Количество митохондрий – средне (зависит от тренированности человека).
  • Количество мышечных волокон в организме – различное, (много у нетренированных людей, у тренированных ПМВ превращаются в ГМВ или ОМВ).

ПМВ это что-то усредненное между ГМВ и ОМВ, они использую энергообеспечение, как и ОМВ, так и ГМВ. Особая способность этих мышечных волокон – приобретение признаков ОМВ или ГМВ в зависимости от нагрузки. Если идет анаэробная нагрузка и нужен больше гликолиз – ПМВ превращаются в ГМВ. Если человек получает аэробную нагрузку – ПМВ превращаются в ОМВ.

Красные медленные окислительные мышечные волокна (далее ОМВ):

  • Цвет – красный.
  • Скорость сокращения – низкая.
  • Основное энергообеспечение – окисление.
  • Порог возбудимости – низкий.
  • Аксон – без миелиновой оболочки.
  • Количество митохондрий – много.
  • Количество мышечных волокон – различное, промежуточные мышечные волокна превращаются в ОМВ при тренировках на выносливость.

Экология жизни.Понимание того, как физиология тела приспосабливается к упражнениям, поможет разработать эффективные программы тренировок для ваших фитнес-целей.

Понимание того, как физиология тела приспосабливается к упражнениям, поможет разработать эффективные программы тренировок для ваших фитнес-целей.

Тело человека состоит из разных видов мышечных волокон, которые классифицируются по тому, как производят энергию. Разные мышечные волокна надо тренировать с помощью специальных упражнений, которые должны сосредоточиться на том, как именно производится энергия или генерируется сила. Хотя было идентифицировано много типов мышечных волокон, отличающихся между собой (I, IC, IIC, IIA, IIB, IIA и IIX), их, как правило, делят на две группы: медленно сокращающиеся и быстро сокращающиеся.

Медленно сокращающиеся мышечные волокна (I-тип)

1. Медленно сокращающиеся волокна содержат большое количество митохондрий - органеллы, которые используют кислород для создания аденозинтрифосфата (АТФ), химического вещества, которое выполняет роль топлива при сокращении мышц. Поэтому такие сокращения считаются аэробными.

2. Медленные волокна еще называют красными волокнами. Они интенсивно снабжаются кровью, которая поставляет миоглобин, из-за чего и создается красный цвет.

3. Поскольку они обеспечивают свой собственный источник энергии, то могут поддерживать достаточный уровень силы в течение длительного периода времени. Но медленно сокращающиеся мышечные волокна сами по себе не способны генерировать высокие уровни этой силы.

4. Медленные волокна имеют низкий порог активации , то есть первыми включаются в работу при физической деятельности. Если они не могут генерировать нужные уровни силы, необходимые для данного вида активности, к работе подключаются быстро сокращающиеся волокна.

5. Мышцы, ответственные за поддержание определенного положения тела, в большей степени состоят именно из медленно сокращающихся волокон.

6. Статические тренировки на выносливость помогают увеличить митохондриальную плотность, что в свою очередь влечет к повышению эффективности работы, так как организм будет использовать больше кислорода для производства АТФ.

Как видно из вышеперечисленного, особенности медленно сокращающихся волокон вызваны тем, как они функционируют. А это значит, что для их тренировки наиболее эффективной будет программа аэробных упражнений.

Методы тренировки для медленно сокращающихся волокон:

Упражнения, которые подразумевают длительное изометрическое сокращение с незначительным движением, помогут улучшить способность медленно сокращающихся волокон использовать кислород для производства энергии. Примеры упражнений: планка, боковая планка, удержание равновесия на одной ноге (упражнение «ласточка»).

Упражнения на сопротивление с использованием легких весов, выполняемые в медленном темпе, но с большим количеством повторений (от 15 и выше), заставляют медленно сокращающиеся волокна использовать аэробный метаболизм, чтобы поддерживать активность.

Круговая тренировка с использованием легкого веса, которая включает переход от одного упражнения к другому с минимальным отдыхом (либо вообще без него), способна бросить вызов медленно сокращающимся волокнам.

Упражнения с весом собственного тела и большим числом повторений хорошо активизируют аэробный метаболизм, что сделает работу медленно сокращающихся волокон эффективней.

Во время тренировки с собственным весом или с легким дополнительным весом используйте короткие интервалы отдыха (около 30 секунд между подходами). Это обеспечит вызов медленно сокращающимся волокнам и заставит их использовать аэробный метаболизм в качестве топлива для тренировки.

Быстро сокращающиеся мышечные волокна (II-тип)

1. Быстро сокращающиеся волокна делятся на 2 группы:

  • быстро сокращающиеся IIa - быстрые оксидативные (используют кислород, чтобы преобразовать гликоген в АТФ);
  • быстро сокращающиеся IIb - быстрые гликолитические (используют АТФ, который хранится в мышечных клетках в виде гликогена, чтобы вырабатывать энергию).

2. Быстро сокращающиеся волокна имеют высокий порог активации , поэтому включаются в работу только тогда, когда потребность в силе будет больше, чем могут обеспечить медленно сокращающиеся волокна.

3. Быстрым волокнам требуется меньше времени, чтобы достичь пиковой силы. К том же они могут генерировать больше силы, чем медленные волокна.

4. Хотя они генерируют больше силы, но и быстрее устают.

5. Мышцы, отвечающие за создание движения, в большей степени состоят из быстрых волокон.

6. Тренировка для силы и прочности увеличивает количество быстро сокращающихся мышечных волокон, задействованных в конкретном движении.

7. Быстро сокращающиеся волокна отвечают за размер и выразительность мышц.

8. Быстрый тип волокон называется «белыми волокнами» , так как плохо снабжается кровью и не имеет такого насыщенного цвета, как второй тип.

Как видно из вышеперечисленного, характеристики быстро сокращающихся волокон требуют тренировок на силу и прочность, а также на развитие взрывной силы . Если вы хотите по максимуму использовать быстрые волокна в своих тренировках для повышения силы и прочности, вот несколько конкретных методов, которые в этом помогут.

Методы тренировки для быстро сокращающихся волокон:

Тренировки с тяжелым весом заставляют мышцы активировать больше мышечных волокон. Чем тяжелее вес, тем больше быстро сокращающихся волокон будет вовлечено в работу.

Выполнение взрывных движений, а также упражнений на прочность с использованием штанги, гирь или гантель, обеспечит работу большего количества мышечных волокон.

- Быстро сокращающиеся волокна быстро устают. Поэтому надо сосредоточиться на использовании тяжелого веса, но только до определенного числа повторений (например, от двух до шести), чтобы достигнуть максимального эффекта.

Поскольку быстрые волокна быстро истощают энергию, во время тренировок требуются более длительные периоды отдыха, чтобы мышцы-двигатели имели достаточно времени восстановиться и пополнить запасы АТФ. Поэтому после каждого взрывного или силового упражнения стоит делать паузы продолжительностью в 60-90 секунд.

Генетика определяет количество каждого из типов мышечных волокон в нашем теле. Тем не менее, понимание того, какой именно, быстро- или медленно сокращающийся, тип является доминирующим, поможет выстроить правильную программу тренировок. Поэтому, если обнаружите, что, как правило, придерживаетесь тренировок на выносливость, и они относительно легко вам поддаются, вы, вероятно, являетесь обладателем большого количества медленно сокращающихся волокон. И наоборот, если предпочитаете физическую нагрузку, которая предусматривает короткие взрывные движения или тренировки с большим весом, - в вашем теле доминирует быстро сокращающийся тип волокон.

Программа упражнений, которая применяет правильные стратегии тренировок для ваших мышечных волокон, поможет максимизировать эффективность нагрузок. опубликовано

Таблица характеристик типов мышечных волокон

Характеристики

Медленно сокращающиеся

Быстро сокращающиеся IIa

Быстро сокращающиеся IIb

Генерирование силы

Низкий уровень

Средний уровень

Высокий уровень

Скорость сокращения

Низкий уровень

Высокий уровень

Высокий уровень

Уставаемость

Низкий уровень

Средний уровень

Высокий уровень

Гликолитическая способность

Низкий уровень

Высокий уровень

Высокий уровень

Оксидативная способность

Высокий уровень

Средний уровень

Низкий уровень

Снабжаемость кровью

Высокий уровень

Средний уровень

Низкий уровень

Митохондриальная плотность

Высокий уровень

Средний уровень

Низкий уровень

Выносливость

Высокий уровень

Средний уровень

Низкий уровень

Присоединяйтесь к нам в

Приветствую всю нашу честную братию! Сегодня мы продолжим нудить, ибо нас ждет продолжение, вторая часть, заметки под названием "Типы мышечных волокон". Из нее Вы узнаете все о практических аспектах тренинга того или иного типа, выявите, какие волокна преобладают у Вас, и как в связи с этим необходимо строить свой тренировочный процесс и подбирать упражнения.

Итак, если все в сборе, тогда начнем.

Типы мышечных волокон: как выявить доминантные и эффективно тренироваться?

Конечно, наша заметка была бы не полной, если бы мы не рассмотрели практическую сторону вопроса, поэтому давайте продолжим наше вещание в этом ключе. Но перед этим ознакомьтесь с, чтобы не возникало никаких вопросов. Готово? Вот теперь начнем с рассмотрения следующего вопроса…

Количество повторений и вовлекаемые волокна.

Следующая памятка поможет Вам определиться с количеством повторений и типом мышечных волокон, вовлекаемых в работу.

№1. Развитие максимальной мощности.

1-3 . Нагрузка высокая и составляет 95-100% от одноповторного максимума. Такая схема тренинга оставляет в работе тип волокон IIA и, в основном, тип IIB для завершения последнего повторения. Она наиболее распространена у сильнейших атлетов-пауэрлифтеров. При нем имеет место миофибриллярная гипертрофия, связанная с увеличением белка в мышцах за счет сателлитных клеток, помогающих повысить количество и размер сократительных белков (актина и миозина) . Количество мышечных волокон остается тем же самым, однако сателлитные клетки сливаются с существующими клетками и жертвуют свои ядра и ДНК, помогая увеличиваться в размере мышечным волокнам.

№2. Силовой тренинг.

Количество повторений до отказа 2-6 . Для завершения повторений используются промежуточные и тип IIB волокна. Такая схема тренинга подходит для тех, кто хочет увеличить свои силовые показатели и развить анаэробную выносливость. Миофибриллярная гипертрофия происходит за счет сателлитных клеток, увеличения сократительных белков актина и миозина.

№3. Тренировки на развитие гипертрофии.

Количество повторений до отказа 8-20 . Такая схема тренинга заставляет включаться в работу тип I, промежуточный и тип IIB волокна. В отличие от тренинга №1 и №2, гипертрофия происходит не за счет миофибриллярного аппарата, а за счет саркоплазматического, увеличивая количество саркоплазмы. Количество повторений и используемые веса, необходимые для выполнения заданного количества повторений, будут гарантировать потенциал роста всем типам волокон.

№4. Развитие выносливости.

Количество повторений 20 и более. Волокна типа I - это выносливые волокна, которые быстро восстанавливаются в сравнении с быстросокращающимися. Идеальная тренировка на выносливость должна включать подходы по 90 секунд с использованием веса без чувства отказа в течение этого времени. Другими словами, чтобы не провоцировать включение в работу более сильных мышечных волокон – промежуточных и быстросокращающихся, необходимо использовать легкие веса и не стремиться в повторениях к отказу. В таком случае можно надеяться только на тренировку волокон типа I.

Типы мышечных волокон. Как правильно тренироваться? Общие советы.

Следующие советы помогут Вам сориентироваться в отношении стратегии тренировок и использовании тренировочных принципов.

Итак, запомните:

  • для развития волокон тип I нужно в неделю проводить больше аэробных тренировок, в частности, в соотношении 4 против 1-2 силовых;
  • волокна типа IIA хорошо поддаются росту при длительных анаэробных тренировках с использованием суперсетов, гигантских сетов, дроп-сетов;
  • если Ваша цель - сбросить вес, и у Вас преобладают красные (медленные) волокна, то необходимо ориентироваться на бег в умеренном темпе на длинные дистанции. В таком случае, благодаря аэробному способу получения энергии, сжигаются жиры;
  • если Ваша цель - увеличение силовых показателей и количества белых волокон типа IIB, то необходимо тренироваться в диапазоне 3-7 повторений;
  • чтобы в работу включились быстрые волокна и происходило увеличение мышечной массы, необходимо тренироваться интенсивно, т.к. только в таком случае в работу включаются волокна с большими мотонейронами (тип II) ;
  • количество повторений в диапазоне 8-12 в совокупности с высокой степенью интенсивности всей тренировки окажут максимальное воздействие на увеличение размера мышц;
  • силовой тренинг на развитие быстрых волокон подразумевает короткие подходы (до 7 повторений) с несколькими (2-4 ) минутами отдыха;
  • продолжительные нагрузки от 40 минут в аэробной зоне пульса направлены на сжигание жира и вовлечение в работу медленных волокон;
  • тренировки на голодный желудок (при низком уровне гликогена) направлены на тренировку волокон типа I.

Собственно, все это время мы глаголили относительно типов мышечных волокон и схем тренинга, но как узнать, какой тип волокон преобладает конкретно у нас? В этом поможет следующая подглава.

Тест на беременность соотношение быстрых/медленных мышечных волокон

В бодибилдинге, как ни странно, тоже существуют свои тесты, причем для некоторых из них не требуется никакого сподручного оборудования. Так, в частности, чтобы выявить преобладающий у атлета тип мышечных волокон, проводят следующий тест – лимит повторений мышцы по сравнению с ее максимальной силой. Смысл заключается в следующем:

  1. выбирают 1 изоляционное (условно-изоляционное) упражнение для конкретной мышечной группы, например, бицепса – подъем гантели одной рукой/EZ-штанги двумя;
  2. подбирают вес снаряда таким, чтобы можно было выполнить “чисто” самостоятельно только 1 повторение (1 RM) ;
  3. отдых 3-5 минут;
  4. берут вес, который составляет 80% от 1 RM (для этого умножают максимальный на 0,8 ) и выполняют столько повторений, сколько это возможно.
  5. 4 до 7 , то у Вас преобладают быстрые (гликолитические) мышечные волокна, которые являются сильными, но не выносливыми;
  6. если количество повторений составляет 10 , то имеет место паритет быстрых и медленных волокон;
  7. если количество повторений укладывается в диапазон от 12 до 15 , то у Вас преобладают медленные (окислительные) мышечные волокна.

Поясню более популярно, о чем идет речь. Например, Вам надо определить, какие волокна преобладают у Вас в двуглавой мышце плеча. Вы смогли поднять 1 раз гантель на бицепс с весом 30 кг, значит 1 RM = 30 кг, 80% будет составлять 24 кг. Затем Вы отдохнули и выполнили подход с количеством повторений 13 , следовательно, Ваш бицепс тормозной:), т.к. состоит преимущественно из красных мышечных волокон.

Используя такой алгоритм, необходимо пройтись по каждой мышечной группе и, используя свои изоляционные упражнения, выявить тип преобладающих мышечных волокон. Обладая такими данными, Вам будет проще построить свою тренировку и добиться максимума отдачи от своих мускулов.

Думаю, возник резонный вопрос: какие изоляционные упражнения можно использовать для каждой мышечной группы. Ответ Вы найдете в следующей памятке.

В текстовом варианте упражнения на группы мышц выглядят следующим образом:

  • грудные - на горизонтальной скамье;
  • бицепс - /подъем гантели на бицепс;
  • трицепс - ;
  • спина – тяга верхнего блока к груди сидя;
  • плечи – ;
  • передняя поверхность бедра – разгибания ног в тренажере;
  • задняя поверхность бедра – .

Мышечные группы по типам волокон

Согласитесь, интересно было бы узнать, как тренировать ту или иную мышечную группу в ключе знания типов волокон, ей соответствующих. Ведь в таком случае тренинг получается более осмысленным, и можно уже самому пытаться .

В связи с этим, я составил некий обобщенный атлас мышечных групп по типу мышечных волокон. Вот что он из себя представляет.

Что касается некоторых особенностей типов мышечных волокон (м.в.) мышечных групп, то они следующие:

  • бицепсы бедра и большая ягодичная относятся к смешанному типу, с преобладанием медленных м.в. Поэтому их необходимо нагружать более высоким количеством повторений до отказа;
  • камбаловидная состоит на 70% , а икроножная на 55% из красных м.в. (т.е. она пограничный смешанный тип с небольшим перевесом медленных м.в.) . Поэтому в связи с тем, что подъемы на носки сидя нагружают камбаловидную, необходимо выполнять большее количество повторений до отказа при ее тренировке. В свою очередь к тренировке икроножных необходимо подходить с небольшим количеством повторений (до 8 ) , но большим весом, поэтому выполнение подъемов стоя на носки требуется выполнять с предельными весами;
  • передняя поверхность бедра достаточно индивидуальная мышечная группа, в которой типы мышечных волокон варьируются м/у смешанными от быстрых до медленных. Прямая мышца бедра преимущественно обладает быстросокращающимися м.в. Поэтому приседания (многосуставное движение) со штангой на груди/плечах следует проводить с большим весом, но небольшим количеством повторений. Однако при выполнении разгибаний в коленном суставе в тренажере сидя (односуставное движение) оптимальным вариантом будет комбинированный подход к нагрузке;
  • дельты относятся к смешанному типу волокон со смещением в сторону красных, поэтому выгоднее всего их тренировать, используя комбинированный подход, с акцентом на более высокое количество повторений до мышечного отказа;
  • бицепс, трицепс, грудные – в этих мышечных группах преобладают белые м.в., поэтому их лучше прорабатывать с акцентом на высокую нагрузку и малое число повторений;
  • широчайшая мышца спины имеет практически идеальный баланс (50/50 ) м/у быстрыми и медленными м.в., поэтому “крылья” необходимо прорабатывать используя комбинированный подход;
  • пресс – промежуточный тип с преобладанием волокон быстрого подергивания, поэтому в тренировке мышц живота целесообразней использовать комбинированный подход;
  • трапеции и разгибатели спины – в них преобладают окислительные волокна, это выносливые мышцы, которые необходимо “долбить” большим количеством повторений.

Теперь поговорим про…

Типы мышечных волокон и восстановление

Важным аспектом тренинга является понимание вопросов восстановления мышечных групп в зависимости от типов преобладающих волокон. Итак, говоря о восстановлении волокон, всегда будем держать в уме следующую памятку.

Приведу некоторые поясняющие моменты:

  • волокна IIB рекрутируются только в течение последних 2-20 секунд сокращений, вблизи мышечного отказа (истощения ресурса мускула) ;
  • время восстановления волокон IIB составляет порядка 4-10 дней, по этой причине нет никакого смысла часто ходить в тренажерный зал для тренировки быстрых волокон;
  • если силовые тренировки были возобновлены до восстановления волокон типа IIB (например, после 3 дней отдыха) , то Вы почувствуете, что мышечное истощение будет происходить гораздо раньше, чем в предыдущей сессии. Определенная часть волокон будет как бы “законсервирована” и не будет доступна для “найма”. Восстановление, ремонт и рост мышц происходит только после достаточного отдыха;
  • в отличие от типа IIB, выносливые волокна типа I становятся доступны для найма уже после 90 секунд отдыха.

Вывод: в связи с указанными выкладками, оптимальной стратегией тренинга является использование умеренно тяжелых весов. Это позволяет достаточно быстро прогрессировать по всем видам моторных единиц (типам волокон), вовлекая оные в работу – не так быстро, чтобы только белые волокна получают основную часть стимуляции, и не так медленно, чтоб красные и промежуточные двигательные единицы могут восстановиться. Таким образом получается, что для максимально полного воздействия (тотальный охват) на весь спектр мышечных волокон, вес отягощения должен быть не легким, но и не слишком тяжелым.

Это были общие выкладки, теперь давайте конкретно пройдемся по каждому типу волокон и выявим оптимальное количество повторений и время работы под нагрузкой.

Типы мышечных волокон: оптимальное время нахождения под нагрузкой и количество повторений в сете

Чтобы было наглядней и понятней, сведем все цифровые и текстовые данные в соборную таблицу. В итоге получим следующее (кликабельно) .

Помните, какие волокна у Вас преобладают, и какие особенности у того или иного типа, это поможет Вам определиться с количественными параметрами тренировок.

Так вот, в связи с этим полезно будет знать, как следует тренироваться в свете доставшегося телесного наследства. Это мы и разберем. И начнем с типа телосложения…

№1. Эктоморф.

Худощавый тип с длинными конечностями и преобладающим красным типом мышечных волокон. Именно поэтому данные представители медленно набирают мышечную массу, т.к. их волокна тормозят и их много. При силовых тренировках Вы в праве рассчитывать на увеличение силы и, в меньшей степени, мышечной массы. В общем и целом, эктоморфу свои усилия необходимо сосредоточить на стимулировании БМВ (быстрые м.в.), и хотя соотношение ММВ и БМВ особо не изменяется (в пределах 10% ) в результате тренировок, все же соотношение масс этих волокон достаточно хорошо поддается управлению. Т.е. если у эктоморфа условно до начала тренировок соотношение БМВ и ММВ = 20:80% , то во время занятий увеличится “удельный вес” быстрых волокон. Другими словами, правильный тренинг поспособствует гипертрофии белых волокон и атрофии красных. И, как следствие, такой атлет спотенцирует свой мышечный рост.

Вывод: идеальным количеством повторений в подходе является 4-8 .

№2. Мезоморф.

Поджарый и в целом атлетичный тип фигуры, с высоким процентом быстрых мышечных волокон типа 2А и 2В. При силовых тренировках в праве рассчитывать на увеличение как силовых, так и объемных показателей.

№3. Эндоморф.

Округлые коренастые атлеты с высоким процентным содержанием волокон быстрого типа 2В. При силовых тренировках в праве рассчитывать на еще большее увеличение силы, с корректировкой в сторону увеличения, мышечной массы.

Мезоморфы и эндоморфы изначально имеют больше БМВ, поэтому для увеличения мышечной массы им просто нужно слегка себя подтолкнуть.

Вывод: идеальным (с точки зрения увеличения мышечной массы) количеством повторений для мезоморфа является 8-12 , эндоморфа 12-15 за подход.

Общим правилом для увеличения мышечной массы является высокая интенсивность тренировки, ибо именно она позволяет включить (в последних повторениях) быстрые мышечные волокна, ответственные за гипертрофию. А в свете того, что белые волокна имеют гораздо большую поверхность, чем красные, то и мышечные объемы будут прирастать лучше. Таким образом получается, что тренировка на увеличение мышечной массы предполагает высокую интенсивность в диапазоне отказных повторений на 8-12 раз.

Ну и в заключении (или Вы уже спите? :)) рассмотрим тренировочную схему на максимальное развитие быстрых мышечных волокон.

Как по максимуму задействовать белые мышечные волокна? Схема тренинга .

Множество научных исследований приходят к выводу, что максимальной вербовки БМВ позволяет добиться следующая тренировочная схема - сплит:

  • тренировка №1: 1-5 повторений, 3-5 минут отдыха, многосуставные упражнения;
  • тренировка №2: 8-12 повторений, 60-90 секунд отдыха, только многосуставные движения;
  • тренировка №3: 12+ повторений, 30-60 секунд отдых, суперсеты, многосуставные и изоляционные движения.

Другими словами, одна тренировка в неделю должна быть силовой (лифтинг) и состоять из упражнений – становая тяга, приседания, жим лежа, подтягивания, отжимания на брусьях, жимы на плечи и тяги штанг. Другая – классической-культуристической с числом повторений 8-12 и третья – интенсивно-памповой с выполнением упражнений в стиле паровозик (суперсеты) .

Уфф-ф, собственно, у меня все, теперь давайте подытожим всю это болтологию и будем прощаться.

Послесловие

Ну вот и завершили мы мутоторную техническую заметку про типы мышечных волокон. Молодцы, что дочитали до конца, теперь Вы знаете, какие типы волокон бывают, как их выявить и стимулировать к росту. Все это поможет максимально развить Ваш мышечный потенциал и добиться того телосложения, которого всегда хотелось. На сим все, рад был уснуть писать для Вас, до связи!

PS. а Вы разделяете тренировку по типу волокон?

PPS. Внимание! 22.03 станет доступна возможность отправки анкет для и питания. Буду рад нашей совместной работе!

С уважением и признательностью, Протасов Дмитрий .

Вряд ли кто будет возражать, что в беге на средние и длинные дистанции необходима силовая подготовка, которая имеет свою специфику. Для ее правильного проведения надо учитывать наличие в мышцах быстрых и медленных волокон.

Редакция предлагает читателям цикл бесед с кандидатом биологических наук, заведующим проблемной лаборатории РГАФКа Виктором Николаевичем Селуяновым, который долгое время занимается изучением свойств мышц, мышечных волокон, особенностей развития силы и в целом оригинальным подходом к тренировке бегунов на средние и длинные дистанции.

- Виктор Николаевич, хотелось бы начать разговор с основных понятий. Что такое мышечная композиция?

Спортивный результат в беге на средние и длинные дистанции зависит от аэробных возможностей, точнее, от анаэробного порога, от мощности бега и величины потребления кислорода анаэробном пороге. Исследования показывают, что эти показатели напрямую связаны с мышечной композицией. Чем больше у спортсмена окислительных мышечных волокон, тем выше анаэробный порог.

Классифицировать мышечные волокна можно минимум двумя способами. Первый способ - по скорости сокращения мышцы. В этом случае все волокна делятся на быстрые и медленные. Это метод определяет наследственно обусловленную мышечную композицию. По ней можно определить будущую специализацию спортсмена. Как правило, бегуны на средние и длинные дистанции имеют большую долю ММВ (медленных мышечных волокон). Средневики - 50-70%, стайеры - 70% и выше.

Существует и второй способ классификации. Если в первом случае оценка идет по ферменту миофибрилл (миозиновая АТФ-аза), то во втором - по ферментам аэробных процессов, по ферментам митохондрий. В этом случае мышечные волокна делят на окислительные и гликолитические. Те мышечные волокна, в которых преобладают митохондрии, называют окислительными. В них молочная кислота практически не образуется.

В гликолитических волокнах, наоборот, очень мало митохондрий и при их работе образуется много молочной кислоты. Чем больше молочной кислоты, тем больше закисление, тем раньше наступает локальное утомление.

Результаты этих двух методов не обязательно совпадают. Задача тренера не переделать наследственность, а сделать так, чтобы у спортсмена стало больше окислительных МВ, что поддается изменению. При правильно построенной тренировке количество окислительных волокон у спортсмена может возрастать, так как в гликолитических МВ начинает увеличиваться масса митохондрий и они постепенно становятся более аэробными, потребляют больше кислорода и в конце концов перестают образовывать молочную кислоту. Почему это происходит? Потому что промежуточные продукты, например, пируват, не превращается в лактат, а поступает в митохондрии, где окисляется до воды и углекислого газа. Такие спортсмены показывают выдающиеся результаты, если нет других лимитирующих факторов.

- Как на практике определить мышечную композицию?

Международный стандарт - берут кусочек мышечной ткани (как правило, из мышц бедра - наружной головки) и биохимическими методами определяют, сколько быстрых и сколько медленных волокон. Ту же самую порцию подвергают еще одному анализу, при котором определяют количество дыхательных ферментов.

В нашей лаборатории еще под руководством Ю.В. Верхошанского были разработаны опосредованные, косвенные, методы, проводимые на универсальном тензографическом стенде. Мы на нем определяли скорость нарастания силы и оказалось, что она связана с количеством быстрых и медленных волокон. Потом такие же исследования выполнил Коми в Финляндии. Он нашел корреляционную зависимость между мышечной композицией по скорости сокращения и крутизной нарастания силы. Но мы пошли дальше и разделили градиент силы на саму силу, то есть получили относительный показатель, который хорошо работает. Мало того, может быть, это более точный метод, чем биопсия, поскольку мы прямо измеряем скорость напряжения мышцы.

Мы разделяем бегунов стайеров и бегунов на средние дистанции по этому показателю. У стайеров медленными мышцами являются как передние, так и задние мышцы поверхности бедра, а у бегунов на 800 м - мышцы передней поверхности бедра такие же медленные, а задние - быстрые, как у хороших спринтеров. Поэтому они быстро бегут 100 м с ходу, и именно эти мышечные волокна берегут до самого финиша.

-Значит, если мы берем биопсию из четырехглавой мышцы бедра, то мы можем порой ошибаться? Соотношение волокон в разных мышцах неодинаково?

Совершенно верно. В последнее время накопилось много материалов, которые свидетельствуют, что если одна мышца медленная, скажем, прямая мышца бедра, то не обязательно, что и все остальные такие же. Интересно, что у спринтеров передняя поверхность бедра не быстрая и не медленная. Поэтому можно предположить, что у них задняя поверхность быстрая, иначе быть не может, но биопсию все равно берут из передней поверхности бедра и результаты для спринта получаются некорректные.

- А по вашему методу?

По нашему методу все нормально. У спринтеров и передняя довольно быстрая и очень сильная, а задняя тем более. Если же взять прыгунов, то у них до 90% быстрых волокон в передней поверхности бедра - это главная для них мышца. Но в беге все-таки более важна задняя поверхность, она и рвется поэтому.

- Если опуститься вниз на мышцы голени, каковы они?

Спринтеры отличаются не только быстрой икроножной, но и быстрой камбаловидной мышцой. Чем длиннее дистанция тем больше там медленных волокон. Один опытный тренер мне рассказал, что в школах ищет ребят с быстрой стопой.

- Расскажите о схеме работы мышц в соревновательном беге, скажем, в беге на 800 м .

Со старта спортсмен выходит на нужную <крейсерскую> скорость, необходимую для бега, скажем, для этого нужно 15 секунд. Бегун рекрутирует практически все волокна в рабочих мышцах, которые тратят свою АТФ и креатинфосфат. Как только он вышел на эту скорость, активность мышц снижается до величины, необходимой для поддержания нужной скорости. Следовательно, те волокна, которые отработали свое (как правило, это быстрые или гликолитические), выключаются из работы и начинают отдыхать и восстанавливать АТФ, а бегун движется 30-40 секунд за счет тех мышц, которые обеспечивает эту скорость, но у них запас АТФ также начинает снижаться, а аэробные процессы не могут обеспечить заданной мощности, и бегун начинает подключать все новые двигательные единицы. Если к 600 м у него остались в запасе еще быстрые волокна, он сможет прибавить, если он исчерпал мышечные ресурсы, то сможет только поддерживать скорость, которая начнет падать, так как он включает не только окислительные волокна, но и самые быстрые гликолитические волокна, образующие молочную кислоту, ионы водорода. Это мешает мышцам сокращаться, и как бы бегун не хотел быстро финишировать, ничего не получится - скорость будет снижаться.

Идеальный бегун должен быть сильным и у него не должно быть гликолитических волокон. Чем выше анаэробный порог и чем ближе он к максимальному потреблению кислорода, тем выше будет результат. Ярким примером был новозеландец Питер Снелл, много использовавший в тренировке бег по холмам, что как раз наращивает количество митохондрий в гликолитических волокнах и гарантирует такой высокий уровень аэробных возможностей, что он мог не закисляться до самого финиша. Поэтому при низких скоростных способностях он умудрялся бежать в конце дистанции очень быстро.

- Значит можно сказать, что стратегия подготовки бегуна на средние дистанции с точки зрения развития мышц - это увеличение силы ММВ и перевод гликолитических в окислительные волокна.

Да. Это не изменение наследственной мышечной композиции, а попытка увеличить массу митохондрий и поперечник ММВ.

- Вы вспомнили Питера Снелла, но у нас сейчас есть Юрий Борзаковский, который начинает 800 м спокойно, а потом очень быстро финиширует. Можно предположить, что он тоже не закисляется.

Видимо, это так. Я с удовольствием бы его обследовал и дал бы какие-то рекомендации. Если у человека 100% окислительных волокон, то его тактика прохождения дистанции однозначна - он разгоняется до <крейсерской> скорости и потом ее держит до конца. Но такие люди встречаются редко или, как правило, они стайеры. Если же люди достаточно сильные, но мышцы у них недостаточно проработанные и у них есть гликолитические волокна, им лучше начинать в оптимальном темпе, держать эту скорость до финиша, а там выдавать, что есть еще в быстрых волокнах. Но гликолиз работает всего 20 секунд, поэтому начало спурта должно начинаться не более чем за 150 м.

- Давайте теперь поговорим о методах силовой подготовки.

В классической силовой работе с максимальными отягощениями используются и медленные и быстрые волокна, но тренируются только быстрые. Поскольку режим динамический (периодически с расслаблением мышц), то через окислительные мышечные волокна идет кровь, снимает оттуда ионы водорода, а без них сила именно в них не растет. Нужно слегка закислять мышцу, иначе она в силе прибавлять не будет.

- Это удивительно, что медленные волокна работают, а эффекта нет.

Законы физиологии требуют рекрутирования всех МВ, но другие биологические законы, связанные с синтезом миофибрилл, требуют наличия гормонов, креатина, это всегда есть, но ионы водорода открывают поры и гормонам легче поступать к ДНК. Где много кислорода, где много митохондрий, ионы водорода просто исчезают. Они образуются в быстрых волокнах, переходят в медленные и там исчезают. Поэтому главного стимулятора развития силы для медленных волокон нет в динамическом режиме.

- Тогда возникает вопрос, а как же идет развитие быстрых волокон, если ионы водорода все уйдут в медленные волокна и там исчезнут?

Ионы водорода образуются в гликолитических (быстрых) мышечных волокнахи могут дифундировать в соседние мышечные волокна и кровь. Поэтомув быстрых мышечных волокнах ионы водорода есть, а в окислительных (медленных) мышечных волокнах ионы водорода превращаются в воду при участии митохондрий.

- А как тогда увеличить силу медленных мышечных волокон?

Мы в нашей лаборатории придумали упражнения, которые назвали стато-динамические, без расслабления мышц. Например, приседания со штангой с небольшим весом, даже с грифом от штанги. Но выполнять их нужно медленно и не выпрямлять ноги до конца, не давая возможности мышцам бедра хотя бы на мгновение расслабиться. После выполнения таких приседаний уже через 30-40 секунд мышцы устают и появляется боль.

- Неужели при таком режиме быстрые волокна не включаются?

Электромиограммы свидетельствуют, что активность мышц в таком режиме около 50%, по мере утомления к концу упражнения она увеличивается, но не достигает максимума, что говорит о том, быстрые МВ не рекрутируются.

- Но в самом начале нашего разговора вы говорили, что в медленных мышечных волокнах практически не образуется молочной кислоты. Откуда тогда это закисление? Может быть, все-таки быстрые волокна работают в таких упражнениях?

Если мышца напряжена, то мышечные волокна сдавливают капилляры и по ним кровь перестает поступать в мышцу. Через несколько секунд начинается гипоксия, поэтому во всех клетках, в том числе и в окислительных мышечных волокнах, начинается анаэробный гликолиз, образуется молочная кислота.

- После таких тренировок происходит гипертрофия ММВ?

Конечно, но нужно учитывать, что медленные волокна могут занимать всего треть мышцы, а поперечник медленных мышечных волокон на 30-40% процентов меньше быстрых. Поэтому это происходит сначала незаметно, так как растет плотность миофибрилл, за счет появления новых, потом растет и поперечник, когда вокруг новых миофибрилл появляются митохондрии. Но митохондрии занимают всего 10% общего объема мышцы. Основной рост - за счет миофибрилл.

По общепринятой классификации медленные мышечные волокна относятся к I типу, а быстрые – ко II типу волокон.

Среди быстрых мышечных волокон выделяется два подтипа – II-A и II-B. Подтип II-A отличается более высокой окислительной способностью. Их окислительная способность, однако, ниже, чем у медленных волокон типа I. Волокна этого подтипа (II-A) называют быстрыми окислительно-гликолитическими. Быстрые окислительно-гликолитические волокна – это часть быстрых волокон, приспособленных к достаточно интенсивной аэробной энергопродукции наряду с весьма мощной анаэробной системой энергообеспечения.

Подтип II-B характеризуется наиболее высокой гликолитической активностью среди всех мышечных волокон, поэтому волокна этого типа называют быстрыми гликолитическими.

Интересно проследить изменения в мышцах-сгибателях пальцев по мере развития их тренированности, выражающейся в увеличении времени удержания хвата. Не подготовленные люди обычно могут выполнять вис на перекладине в течение 1,5 – 2,5 минут, после чего мышцы предплечья у них «дубеют» и хват ослабевает.

Статическая работа по удержанию хвата требует относительно больших мышечных усилий, поэтому мышцы-сгибатели пальцев неподготовленных спортсменов работают исключительно в анаэробном режиме.

По мере повышения интенсивности нагрузки и всё более выраженной активации гликолиза, фактором, ограничивающим работоспособность, является возможность окислительной системы утилизировать пировиноградную кислоту. Чем больше эта способность, тем меньше образуется и накапливается в мышцах молочной кислоты. Получается, что для увеличения длительности удержания хвата необходимо повысить мощность окислительной системы энергообеспечения статически работающих мышц. Но повышение окислительной способности, например, гликолитически работающих быстрых мышечных волокон практически означает конверсию волокон II-В в II-А, т.е. превращение гликолитических мышечных волокон в окислительно-гликолитические.

Конверсия мышечных волокон требует больших усилий со стороны спортсмена и занимает достаточно много времени. Зачастую время удержания надёжного хвата начинает существенно увеличиваться только после многих месяцев целенаправленных тренировок. Особенно это касается спортсменов, изначально имеющих малое время виса. Дело в том, что аэробный механизм энергообеспечения, в значительной мере определяющий работоспособность мышц-сгибателей пальцев квалифицированных спортсменов, начинает играть заметную роль только после 1 – 1,5 минут подтягиваний; до этого спортсмен выполняет подтягивания, используя возможности анаэробных механизмов. Так, выполняя подходы, состоящие их 20-25 подтягиваний и затрачивая на их выполнение от одной до полутора минут, спортсмен активирует только гликолитический механизм, развивая только его возможности. Так, если спортсмен в начале тренировочного цикла подтянулся 25 раз за 1,5 минуты, а в конце – 25 раз за 1,15, это означает, что выросла мощность гликолиза. Чтобы развивать мощность и ёмкость окислительного механизма энергообеспечения, требуется выполнять подтягивания в подходах в течение более длительного времени. Опережающее развитие возможностей гликолитической системы энергообеспечения тормозит развитие аэробного ресинтеза АТФ, необходимого для выполнения подтягиваний в течение четырёх отведённых на это минут.

Состав мышц.

В разных мышцах тела соотношение между числом медленных и быстрых мышечных волокон неодинаково. Сила, скорость сокращения и выносливость мышц в большой мере определяются процентным соотношением этих двух типов волокон. Причём можно выявить определённую закономерность – чем бо́льшую и более длительную нагрузку в естественных (бытовых) условиях несёт мышца, тем выше в ней возможности дыхательного ресинтеза АТФ (активность окислительных ферментов и интенсивность дыхания мышц) и тем лучше условия для его обеспечения (бо́льшее число митохондрий, более высокое содержание миоглобина. Для тех же мышц, которым свойственен резкий переход от покоя к весьма интенсивной работе, выполняемой сравнительно кратковременно, но с близкой к максимуму мощностью, характерны высокая АТФазная активность, значительное содержание креатинфосфата и большие возможности гликолиза .

Таким образом, для быстрых, но рано утомляемых мышц, например, мышц предплечья, характерно преимущественное наличие волокон типа II, а в мышцах способных к длительной работе умеренной мощности, содержатся, в основном, волокна типа I. Если же в мышце содержатся и быстрые и медленные волокна, она предрасположена как к быстрым сокращениям, так и к длительной работе.

От мышц-сгибателей пальцев, отвечающих за удержание хвата требуется длительное поддержание усилий значительной величины. Мышцы, выполняющие такую нагрузку, должны иметь как окислительные, так и гликолитические мышечные волокна. Одних гликолитических волокон здесь недостаточно в связи с чрезмерной для гликолиза длительностью выполнения упражнения, а только окислительные не способны обеспечить поддержание напряжения необходимой величины.

Так как динамические силовые способности легче поддаются тренировке, чем статические, для подтягиваний на этапе отбора более перспективны спортсмены, которые изначально способны выполнять длительный вис, причём, чем дольше, тем лучше. Спортсмены, обладающие высоким «природным» висом, в дальнейшем потратят относительно меньше времени для достижения запланированного результата, им не страшны длительные перерывы в тренировочном процессе, их результаты более стабильны и не так сильно зависят от разминки, подготовки ладоней, температуры воздуха в спортивном зале и других «мелочей», на которые приходится обращать внимание спортсменам, у которых вис не «природный», а натренированный.

Спортсмены с высокими природными способностями к выполнению статической работы по удержанию хвата (которые встречаются довольно редко), не испытывают таких проблем с подтягиванием, с какими сталкиваются спортсмены, обделённые природными данными, а уж тем более, начисто этих данных лишённые.

Вот о процессах, происходящих в мышцах - сгибателях пальцев спортсменов, совершенно не приспособленных к подтягиванию на перекладине, сейчас и пойдёт речь.

Поскольку спортсмены этой группы плохо приспособлены к выполнению мышечной работы по удержанию хвата, их мышцы предплечья должны преимущественно состоять из быстрых гликолитических мышечных волокон. Исходя из наблюдений, для таких спортсменов возможны два варианта развития событий, предшествующих срыву с перекладины во время выполнения подтягиваний.

В первом случае в процессе подтягиваний спортсмен ещё задолго до срыва чувствует, как предплечья как бы наливаются свинцом - «дубеют», и только после этого мышцы перестают слушаться и теряют способность к перехватам. Во втором случае способность выполнять перехваты теряется внезапно, пальцы неожиданно разжимаются и спортсмен срывается с перекладины.

Второй случай – это наиболее неприятный вариант с точки зрения предрасположенности к подтягиваю. Предположительно процессы утомления в этом случае развиваются следующим образом. Первые 20-30 секунд спортсмен выполняет подтягивания, обеспечивая ресинтез АТФ за счёт креатинкиназной реакции. Когда скорость ресинтеза этим путём начинает уменьшаться, какое-то время энергия в объёме, достаточном для удержания хвата поставляется с помощью гликолиза, который постепенно выходит на свою максимальную мощность (которая в этом случае относительно невелика). Но очень скоро суммарная выработка АТФ за счёт анаэробных источников начинает уменьшаться, уровень АТФ в мышцах падает, что и приводит к непроизвольному ослаблению хвата. Спортсмен просто не успевает дойти до стадии «задубения» мышц в связи с ограниченными возможностями гликолиза. Попытки выполнять перехваты или отдыхать в висе дольше обычного, не позволяют избежать срыва, а лишь ненадолго отодвигают его. Несмотря на усиление дыхания, аэробные окислительные процессы не в состоянии использовать доставляемый кислород в связи с тем, что окислительные возможности мышц минимальны.

Получение предупреждения о скором отказе от работы мышц предплечья в виде ощущения забитости мышц – это менее безнадёжный вариант развития событий, чем предыдущий. Можно предположить, что в этом случае мощности гликолиза достаточно для обеспечения более длительного хвата. Но при анаэробном окислении гликогена и глюкозы происходит выделение молочной кислоты (лактата), что, как уже говорилось, регулирует мощность самого гликолиза по принципу обратной связи. Таким образом, накопление лактата оказывает отрицательное действие на сократительные свойства мышц, вызывая их быстрое утомление. Прогрессирующее «задубение» мышц предплечья с последующей потерей управляемости и срывом с перекладины, осложняется тем, что аэробные процессы, способные обеспечить ресинтез АТФ без образования лактата либо не успевают выйти на свою максимальную мощность либо их мощности явно недостаточно.

Закисление мышц предплечья в процессе выполнения подтягиваний нередко наблюдается и у спортсменов, которые способны подтягиваться в течение 4 и более минут. Но в этом случае неприятные ощущения в области предплечья кратковременны, начинаются обычно со слабейшей руки и через некоторое время пропадают – иногда сами по себе, иногда после проведения специальных профилактических мероприятий типа переноса веса тела на сильнейшую руку. Понятно, что в этом случае возможности аэробного ресинтеза АТФ достаточны для обеспечения надёжного хвата при выполнении подтягиваний в выбранном темпе. Упоминание о темпе здесь не случайно, т.к. при попытке его увеличения паузы отдыха в висе в ИП сокращаются, а это может привести к повторному закислению мышц предплечья. Несмотря на то, что быстрые мышечные волокна увеличивают концентрацию лактата в фазе подъёма туловища, окислительные и окислительно-гликолитические волокна успевают извлечь его из крови и быстрых мышечных волокон и утилизировать до наступления следующей фазы подъёма.


Похожая информация.