Аэробная производительность организма. Факторы ограничивающие аэробную работоспособность на уровне отдельной мышцы

В спорте определению аэробных возможностей придается исключительное значение. Многие видные отечественные и зарубежные исследователи изучали различные показатели, характеризующие аэробную производительность спортсменов.

Одним из важных показателей аэробных возможностей, своего рода энергетическим критерием работоспособности спортсменов, является величина максимального потребления кислорода (МПК). Предельное потребление кислорода определяется, как правило, при достаточно интенсивной и продолжительной мышечной деятельности, например езде на велоэргометре. Этот надежный показатель мощности аэробного процесса отражает эффективность взаимодействия основных систем организма, в первую очередь дыхательной, сердечнососудистой и кровеносной. Одними из первых МПК у квалифицированных спортсменов определили лауреат Нобелевской премии А. Хилл и X. Луптон в 1923 г. Они получили невероятную для того времени величину - более 4 л/мин. А. Хилл допустил, что достичь МПК, равного 5 л/мин и более, вообще невозможно. Но этот прогноз не оправдался.

Так, выдающиеся бегуны на средние и длинные дистанции могли потреблять 80-85 мл кислорода в 1 мин По данным Р. Астранда, МПК у бегунов на средние н длинные дистанции - членов сборной команды Швеции составило соответственно 75 и 79 мл/кг/мин У выдающихся советских хоккеистов В. Харламова, Г. Цыганкова, Е. Мишакова этот показатель также был более /и мл/кг/мин. Спортсмены средней квалификации не обладают столь высоким кислородным потолком. Их уровень в диапазоне 2-3 л/мин.

Максимальный уровень потребления кислорода достигается благодаря предельной мобилизации дыхательной, сердечнососудистой, кровеносной систем. «Подъем» на эти вершины происходит в процессе многолетнего спортивного совершенствования. Установлено, что в результате тренировки выносливости МПК может увеличенные возможности, особенно в упражнениях на выносливость.

МПК является «авторитетным» показателем физической работоспособности и в качестве такового рекомендован комитетом по Международной биологической программе. Но при этом надо помнить, что функциональный потолок в виде МПК - это не постоянный счет в банке, который всегда можно реализовать; он требует дополнительных вложений - постоянных занятий физическими упражнениями, преимущественно высокой интенсивности. В противном случае «сбережения» организма будут таять.

Установлена важная роль внешнего дыхания в обеспечении организма кислородом. Высокий уровень потребления кислорода достигается при 50-80 дыхательных движениях в 1 мин., при этом глубина дыхания составляет 2-3 л. Таким образом, вентиляция легких может достигать 180-200 л/мин. Бегуны на длинные дистанции высокой квалификации способны поддерживать при напряженном беге легочную вентиляцию на уровне 120 л/мин и выше в течение более чем 20 мин. Спортивная тренировка повышает функциональную мощность дыхательного аппарата.

Существенным фактором, определяющим потребление кислорода, является система крови. У спортсменов на 1 кг веса тела приходится 80 мл крови, что несколько выше по сравнению с не занимающимися спортом. Помимо этого, кровь спортсменов обладает повышенной способностью связывать во время работы большое количество кислорода (у спортсменов каждый литр крови связывает 230-250 мл кислорода, а у не спортсменов - лишь 170- 190 мл). Этому способствует увеличение концентрации гемоглобина крови, а также выход во время работы депонированной крови. В результате увеличивается кислородная емкость крови, составляющая у спортсменов 20- 25 объемных процентов.

Исследованиями последних лет показано, что основным звеном, ограничивающим максимально возможный уровень потребления кислорода, является сердечнососудистая система. Чем полнее сердце снабжают работающие мышцы кровью, тем лучше осуществляется ресинтез АТФ за счет более выгодных окислительных процессов. Этому также способствует изменение просвета кровеносных сосудов, увеличение числа капилляров в мышцах, перераспределение крови в организме. В результате кровоснабжение активно работающих органов (например, сердца) и мышц увеличивается, а доставка кислорода усиливается.

Таким образом, МПК определяется сложной системой органов, различными процессами и реакциями. Согласованная деятельность этого сложного «ансамбля» обеспечивается посредством нервной и гуморальной регуляции.

Не «подрывая авторитета» МПК как влиятельного представителя мышечной работоспособности, ряд исследователей отмечают и его слабые места. Как уже указывалось выше, кислородный потолок организма определяется огромной суммой процессов и реакций. В результате МПК может недостаточно полно отражать степень участия отдельных его составляющих, а порой и маскировать некоторые менее совершенные механизмы, слабо работающие системы.

Не случайно поэтому ряд ученых говорит о том, что к оценке работоспособности, по данным МПК, следует относиться осторожно. В спортивной практике нередко ведущие бегуны, лыжники показывают сходные результаты при существенных различиях в МПК. Так, у выдающихся бегунов на длинные дистанции Ф. Шостера и С. Префонтена результат в беге на 5000 м составляет 12,52, при этом МПК первого равнялось 71,4 мл/кг/мин, а второго на 13 мл/кг/мин было выше. Предполагают для повышения информативности МПК оценивать его в связи со спортивным результатом и техникой выполнения движений, а также со способностью эффективно расходовать энергию и психологическими факторами.

Итак, высокий МПК еще не гарантирует успех на беговой дорожке или лыжне. Дело в том, что различные спортсмены используют аэробные возможности во время напряженной мышечной деятельности неодинаково. Установлено, что одни бегуны-марафонцы используют аэробные возможности на 75-80%, а другие -на 85- 90%. Утверждают также, что необходимо оценивать не только «вершину» аэробного обмена, т. е. МПК, но, главное, способность удерживать высокий уровень потребления кислорода на протяжении всей работы. В настоящее время пытаются учитывать и другое. Оказалось, что работоспособность в немалой степени определяется эффективностью окислительных процессов в самой мышце, например в митохондриях - «силовых станциях» клетки, ответственных за образование большей части энергии. Имеются данные о том, что под влиянием спортивной тренировки увеличивается как количество митохондрий, так и эффективность их деятельности. Это обеспечивает лучшее использование кислорода.

Несмотря на солидные исследования, кислородная «служба» организма изучена все же недостаточно. Необходимо еще много сделать, прежде чем дать спортсменам и тренерам исчерпывающий ответ о наиболее эффективных путях и средствах развития аэробной производительности.

Природа «приковала» человека к атмосферному кислороду. Она наделила человека крайне скудными возможностями резервировать, откладывать «про запас» кислород. В крови 1160 мл, в легких 900 мл, в межтканевых пространствах и мышцах около 600 мл кислорода. Мышцы при интенсивной деятельности «пожирают» эти запасы за несколько секунд.

Вместе с тем природа подарила человеку удивительную способность работать в долг, в условиях кислородного дефицита, когда ткани испытывают гипоксию (кислородный голод). Способность работать в долг (анаэробные возможности) зависит от многих факторов: от запасов анаэробных источников энергии, силы биологических ускорителей - ферментов, от компенсаторных реакций, противодействующих кислородному голоданию, от устойчивости различных тканей к недостатку кислорода.

Одним из показателей анаэробных возможностей является величина максимального кислородного долга (МКД), т. количества кислорода, которое организм недополучает во время интенсивной мышечной деятельности. Чем больше организм способен «забирать в долг», тем выше его способность работать при острой нехватке кислорода. Считают, что если величина МПК является отражением мощности аэробного процесса, то данные предельного кислородного долга могут служить показателем емкости (т. е. общего количества освобождаемой энергии) анаэробных источников энергии.

Одним из первых определил наибольшую величину МКД, равную 18,7 л, английский физиолог А. Хилл. Последующие исследования показали, что это далеко не предел. Оказалось, что можно выполнить напряженную спортивную деятельность при кислородной задолженности 20-23 л. Несомненно, что подобный кислородный долг доступен только спортсменам высокого класса: у мастеров международного класса - 22,8 л, а у спортсменов I и II разрядов соответственно 19,94 и 18,51 л. У не занимающихся спортом кислородный долг не превышает 4-7 л (Н. И. Волков).

Большая величина кислородного долга была установлена у бегунов на средние дистанции: у бегунов на 400 м - 21,54, на 800 м - 20,9 и на 1500 м - 20,62 л.

Еще в 30-х годах нашего столетия было показано, что две фракции кислородного долга имеют различную природу. Первая, алактатная, связана с ресинтезом фосфорсодержащих соединений (АТФ, К.ТФ); вторая, лактатная,- с окислительным устранением молочной кислоты. Причем оплата лактатного кислородного долга происходит примерно в 40-50 раз медленнее, чем ликвидация алактатного кислородного долга. При значительном накоплении молочной кислоты в условиях напряженной деятельности лактатный долг может достигать у спортсменов 8-13 л (120-230 мл на 1 кг веса).

Исследования размеров и «скорости оплаты» лактатного и алактатного кислородного долга представляют не только теоретический интерес, но и важны для определения путей направленного развития выносливости в разных видах спорта. Для оценки мощности анаэробного процесса предлагается также учитывать скорость образования кислородного долга, т. е. отношение величины общего кислородного долга на время выполнения работы.

Несмотря на значительное число работ, анаэробные возможности организма изучены в меньшей степени, чем аэробные. Более того, в отношении анаэробной производительности существуют спорные представления. Так, в специальной литературе приводятся очень разноречивые данные о величине кислородной задолженности и ее отдельных фракций. Даже у представителей одного и того же вида спорта (плавание) получены заметно отличающиеся данные максимального кислородного долга. В этом отношении представляют интерес высказывания видного физиолога труда М. И. Виноградова: «…кислородный долг не является непосредственным наследием рабочего периода и, следовательно, не дает основания судить об объеме процессов распада во время работы». С этим трудно не согласиться, так как величина кислородной задолженности отражает не только рабочие сдвиги, но и после рабочие изменения, следовые сдвиги ряда функций.

В настоящее время идет интенсивный поиск новых, более информативных энергетических критериев спортивной работоспособности. Это нашло отражение в ряде научных исследований. Так, профессор А. Б. Гандельсман указывает, что важным энергетическим критерием надежности двигательной деятельности является интенсивность потребления кислорода, характерная для спортсменов конкретной специальности. Установлено, что представители разных видов спорта располагаются по шкале кислородного потребления неодинаково.

Невысокие величины специального потребления кислорода характерны для тяжелоатлетов (1,7 л/мин), прыгунов на батуте (2,1 л/мин), гимнастов (2,3 л/мин), бегунов на короткие дистанции (2,8 л/мин).

Более высокое потребление кислорода имеет место у конькобежцев (3,1 л/мин), велосипедистов (3,2 л/мин), бегунов на длинные дистанции (3,3 л/мин), пловцов подводников (4,1 л/мин).

В качестве показателя биоэнергетической надежности (ПБН) специальной работоспособности предлагается учитывать отношение МПК, характерное для определенного спортсмена, к специальному потреблению кислорода (СПК), типичному для спортсменов данного вида спорта: ПБН Если это указывает на СПК высокую, если меньше 1, - на низкую биоэнергетическую надежность.

По данным Н. И. Волкова, в качестве индикатора, своего рода лакмусовой бумажки, емкости аэробного процесса может служить величина кислорода, потребленного за все время работы. Максимальная аэробная емкость может быть выражена как произведение величины наибольшего потребления кислорода на время, в течение которого возможно удержать этот уровень.

Говоря другими словами, важно оценить не только величину МПК, но и способность основных «служб» кислородного обеспечения - органов дыхания, кровообращения - поддерживать высокий уровень потребления кислорода в течение продолжительного времени.

Резервы повышения работоспособности спортсменов ищут также в экономизации спортивных движений. С этой целью рассчитывают энергетическую стоимость различных упражнений, отдельных тренировочных нагрузок и даже современных мировых рекордов.

Например, в циклических упражнениях уровень спортивных достижений во многом определяется способностью спортсменов экономно расходовать энергию. Так, конькобежцы, владеющие хорошей спортивной техникой скоростного бега на коньках, расходуют энергию при выполнении одинаковой работы на 25-40% меньше, чем начинающие спортсмены (В. Михайлов, Г. Панов, 1975). Таким образом, под влиянием спортивного совершенствования уменьшаются энерготраты на единицу выполненной работы, повышается коэффициент полезного действия мышечных усилий.

Экономизацию в основном рассматривают в двух направлениях. Первое заключается в совершенствовании технического мастерства спортсменов. Ищут наиболее экономически выгодные варианты спортивной техники, при которых в активную деятельность вовлекается наименьшее число мышц, когда движения производятся свободно, раскрепощенно. Этому способствуют исследования расслабления мышц, наиболее рационального использования сил инерции и т. д.

Считают, что систематическая работа над техникой спортивных движений является залогом успеха не только спортсменов невысокого класса, но и опытных мастеров спорта.

Второе направление, названное функциональной экономизацией, основывается на оценке соотношения аэробных и анаэробных источников энергообеспечения. Как уже указывалось, аэробный механизм образования энергии наиболее выгодный. Следовательно, усиление доли участия в работе аэробных процессов обеспечивает более выгодный режим энергообеспечения.

Для исследования функциональной экономизации нередко определяют так называемый порог анаэробного обмена (ПАНО), т. е. величину нагрузки, при которой начинают заметно усиливаться анаэробные процессы. Например, молочная кислота в крови - важный показатель анаэробного обмена - наблюдается тогда, когда потребление кислорода достигает 50-70% от МПК. Чем больше ПАНО, тем выше способность организма работать за счет более выгодных аэробных реакций. Установлено, что с ростом тренированности ПАНО у отдельных спортсменов достигает 75-80% от МПК.

Аэробные и анаэробные возможности развиваются в ходе тренировки. Но оказалось, что этот процесс протекает далеко не равномерно. Имеются данные о том, что наибольший рост, например, аэробной производительности наблюдается в подготовительном периоде тренировки, а в соревновательном периоде величина МПК стабилизируется или даже снижается (В. В. Васильева, 1975). Установлено также, что в процессе тренировки происходит изменение соотношения между различными реакциями, обеспечивающими процесс потребления кислорода. Так, по мере роста тренированности, потребление кислорода во время физических упражнений осуществляется при меньшем усилении вентиляции легких, сердечной деятельности и за счет более эффективного усвоения кислорода тканями. Это отражает более согласованную деятельность дыхательной и сердечнососудистой системы.

Аэробная и анаэробная производительность спортсмена.

Аэробная производительность - это способность организма выполнять работу, обеспечивая энергетические расходы за счет кислорода, поглощаемого непосредственно во время работы. Потребление кислорода при физической работе возрастает по мере увеличения тяжести и продолжительности работы. Наибольшее количество кислорода, которое организм может потребить за 1 минуту при предельно тяжелой для него работе - называется максимальным потреблением кислорода (МПК)

MПK - является показателем аэробной производительности. МПК можно определить, задавая стандартную нагрузку на велоэргометре. Зная величину нагрузки и подсчитав ЧСС, можно с помощью специальной номограммы определить уровень МПК. у спортсменов, в зависимости от специализации, - 50-90 мл/кг.

Для выполнения любой работы, а также для нейтрализации продуктов обмена и восстановления энергетических запасов необходим кислород. Количество кислорода, которое требуется для выполнения определенной работы - называется кислородным запросом

Различают суммарный и минутный кислородный запрос.

Суммарный кислородный запрос - это количество кислорода, необходимое для совершения всей работы

Минутный кислородный запрос - это количество кислорода, требующееся для выполнения данной работы в каждую конкретную минуту.

Минутный кислородный запрос зависит от мощности выполняемой работы. Наибольшей величины он достигает на коротких дистанциях. Например, при беге на 800 м он составляет 12-15 л/мин, а при марафонском - 3-4 л/мин.

Суммарный запрос тем больше, чем больше время работы. При беге на 800 м он составляет 25-30 л, а при марафонском - 450-500 л.

Анаэробная производительность - это способность организма выполнять работу в условиях недостатка кислорода, обеспечивая энергетические расходы за счет анаэробных источников.

Работа обеспечивается непосредственно запасами АТФ в мышцах, а также за счет анаэробного ресинтеза АТФ с использованием КрФ и анаэробного расщепления глюкозы (гликолиза).

Для восстановления запасов АТФ и КрФ, а также для нейтрализации молочной кислоты, образовавшейся в результате гликолиза необходим кислород. Но эти окислительные процессы могут идти уже после окончания работы. Для выполнения любой работы требуется кислород, только на коротких дистанциях организм работает в долг, откладывая окислительные процессы на восстановительный период.

Количество кислорода, которое требуется для окисления продуктов обмена, образовавшихся при физической работе, называется - кислородным долгом.

Кислородный долг можно также определить как разницу между кислородным запросом и тем количеством кислорода, которое организм потребляет во время работы.



Показателем анаэробной производительности является - максимальный кислородный долг.Максимальный кислородный долг -это максимально возможное накопление продуктов анаэробного обмена, требующих окисления, при котором организм еще способен выполнять работу. Чем выше тренированность, тем больше м В среднем величины максимального кислородного долга у спортсменов выше, чем у неспортсменов, и составляют у мужчин 10,5 л (140 мл/кг веса тела), а у женщин-5,9 л (95 мл/кг веса тела). У неспортсменов они равны (соответственно) 5 л (68 мл/кг веса тела) и 3,1 л (50 мл/кг веса тела). У выдающихся представителей скоростно-силовых видов спорта (бегунов на 400 и 800 м) максимальный кислородный долг может достигать 20 л (Н. И. Волков). Величина кислородного долга очень вариативна и не может быть использована для точного предсказания результата. аксимальный кислородный долг.

В кислородном долге различают 2 фракции (части): алактатную и лактатную. Алактатная фракция долга идет на восстановление запасов КрФ и АТФ в мышцах.Лактатная фракция (лактаты - соли молочной кислоты) - большая часть кислородного долга. Она идет на ликвидацию молочной кислоты, накопившейся в мышцах. При окислении молочной кислоты образуются безвредные для организма вода и углекислый газ.Алактатная фракция преобладает в физических упражнениях, длящихся не более 10с, когда работа идет в основном за счет запасов АТФ и КрФ в мышцах. Лактатная преобладает при анаэробной работе большей длительности, когда интенсивно идут процессы анаэробного расщепления глюкозы (гликолиз) с образованием большого количества молочной кислоты.При интенсивной работе длящейся не менее 5-ти минут, наступает момент, когда организм не в состоянии обеспечить свои возрастающие потребности в кислороде. Поддержание достигнутой мощности работы и дальнейшее её увеличение обеспечивается за счет анаэробных источников энергии.Появление в организме первых признаков анаэробного ресинтеза АТФ - называется порогом анаэробного обмена (ПАНО). ПAHO считается в процентах от МПК. У спортсменов в зависимости от квалификации ПАНО равен 50-80 % от МПК. Чем выше ПАНО, тем больше возможностей у организма выполнять тяжелую работу за счет аэробных источников, более выгодных энергетически. Поэтому у спортсмена, имеющего высокий ПАНО (65% от МПК и выше), при прочих равных условиях будет более высокий результат на средних и длинных дистанциях.



В системе оздоровительной физической культуры выделяют следующие основные направления:

Оздоровительно-рекреативное,

Оздоровительно-реабилитационное,

Спортивно-реабилитационное, гигиеническое.

Оздоровительно-рекреативная физическая культура - это отдых, восстановление сил с помощью средств физического воспитания (спортивные игры, туризм, охота и т.д.). Рекреация означает отдых, восстановление сил, израсходованных в процессе труда.

Оздоровительно-реабилитационная физическая культура - это специально направленное использование физических упражнений в качестве средств лечения заболеваний и восстановления функций организма, нарушенных или утраченных вследствие заболеваний, травм, переутомления и др.

Оздоровительно-реабилитационное направление в нашей стране представлено в основном тремя формами:

· группы ЛФК при диспансерах, больницах

· группы здоровья в коллективах физической культуры

· самостоятельные занятия.

Большую роль в системе подготовки спортсмена играет спортивно-реабилитационная физическая культура. Она направлена на восстановление функциональных и приспособительных возможностей организма после длительных периодов напряженных тренировок и соревновательных нагрузок, особенно при перетренировке и ликвидации последствий спортивных травм.

Гигиеническая физическая культура - это различные формы физической культуры, включенные в рамки повседневного быта (утренняя гимнастика, прогулки и т.д.)

Закаливание - это система специальной тренировки терморегуляторных процессов организма, включающая в себя процедуры, действие которых направлено на повышение устойчивости организма к переохлаждению или перегреванию. В результате закаливания увеличивается работоспособность, снижается заболеваемость, особенно простудного характера, улучшается самочувствие.

Наиболее сильная закаливающая процедура - плавание в ледяной воде - имеет ряд противопоказаний, особенно противопоказано: детям, подросткам и людям, постоянно страдающим заболеваниями верхних дыхательных путей. При длительных перерывах в закаливании его эффект снижается или теряется совсем.

Задачами физкультуры в целях профилактики профессиональных заболеваний являются улучшения функционального состояния и предупреждения прогрессирования болезни: повышение физической и умственной работоспособности, адаптация к внешним факторам; снятие утомлениям повышение адаптационных возможностей; воспитание потребности в закаливании, занятиях оздоровительной физкультурой.

Система реабилитации включает уроки физкультуры, желательно на свежем воздухе, занятие ЛФК, терренкур, прогулки на лыжах, езду на велосипеде. Предпочтительнее циклические виды спорта, особенно при заболеваниях сердца, легких, ожирении .

При заболеваниях сердечно-сосудистой, дыхательной и эндокринной систем- упражнения в ходьбе, катание на коньках.

При проведении занятий с работниками, имеющими изменения опорно-двигательного аппарата, важны профилактические занятия, направленные в первую очередь на придание работнику правильной осанки и на нормализацию функций ОДА. Не следует допускать чрезмерных нагрузок. Упражнения с гантелями, мячами и на тренажерах должны выполняться только в щадящем для позвоночника режиме, лежа и с включением в конце занятий упражнений на растягивание и на релаксацию.

Виды оздоровительной физической культуры
Существует много форм физической культуры, которые используются для нормализации функционального состояния человека, а так же для профилактики заболеваний.

Утренняя гигиеническая гимнастика (УГГ) - одно из средств физической культуры. Она развивает силу, гибкость, координацию движений. Улучшает деятельность внутренних органов, вызывает подъем эмоций, особенно если упражнение выполняется под музыку. УГГ лучше выполнять утром в сочетанием с закаливанием, но не очень рано, особенно больным с заболеванием сердечно- сосудистой системы.

Подвижные спортивные игры нормализация психо-эмоционального состояния.

Ходьба и бег . Ходьба как физическое упражнение - ценное средство для улучшения деятельности ЦНС , сердечно –сосудистой и дыхательной систем . Ходьба должна быть продолжительной, но не утомительной.

Бег - физическое упражнение с большой нагрузкой. Он развивает выносливость, особенно полезно для профилактики заболевания сердечно-сосудистой системы, ожирения и др. Его лучше сочетать с ходьбой и дыхательными упражнениями. Ходьбу и бег можно проводить днем и вечером.

Велосипедный спорт велопрогулки показаны при заболеваниях сердечно- сосудистой, дыхательной систем и нарушение обмена веществ, а также при последствии травм суставов ног (для разработки тугоподвижности и тренировки мышц). Зимой велопрогулки заменяются упражнениями на велотренажерах.

Плавание - отличное тренирующее средство и закаливающее. Плавание усиливает деятельность кардиоресператорной системы и обмен веществ, а при травмах и заболеваниях позвоночника ведет к исчезновению болей и улучшению подвижности в суставах.

Особенно важно сочетание физических нагрузок с закаливанием для работников, имеющих отклонения в состоянии здоровья. Так как такие занятия повышают общую тренированность организма, способствуют нормализации обменных процессов, функционального состояния, а так же ведут к усилению закаливания и предупреждают простудные заболевания.

Ограничение аэробной работоспособности связывают с низкой скоростью доставки кислорода к мышцам, недостаточными диффузионной способностью и окислительным потенциалом мышц, чрезмерным накоплением метаболитов анаэробного гликолиза.

Система доставки и утилизации кислорода достаточно сложна и включает несколько этапов. Неудивительно, что не удается выделить единственную, “главную” причину, ограничивающую аэробную работоспособность людей разного уровня функциональной подготовленности. Проблема выявления факторов, ограничивающих аэробную работоспособность, становится особенно актуальной, когда речь идет о высоко тренированных спортсменах, работающих с предельным напряжением систем вегетативного обеспечения мышечной деятельности.

В настоящее время наиболее употребимым параметром, характеризующим аэробную работоспособность, является МПК. В то же время многократно показано, что спортивный результат на длинных дистанциях (работа длительностью более 3-4 мин) зависит от мощности, развиваемой на уровне ПАНО.

С ростом тренированности увеличивается скорость утилизации лактата работающими мышцами, что сопровождается снижением концентрации лактата в крови. Таким образом, чем выше аэробные возможности спортсмена, тем ниже вклад анаэробного гликолиза при отказе от работы во время теста с возрастающей нагрузкой. Отсюда следует, что возможна ситуация, когда потребление кислорода на уровне ПАНО вплотную приблизится к максимальной величине (МПК).

Если предположить, что удельное потребление кислорода (потребление кислорода, отнесенное к весу мышцы) приближается к максимальному значению, то дальнейшее увеличение потребления кислорода (мощности работы) может быть достигнуто только за счет увеличения активной мышечной массы. Логично предположить, что наиболее эффективно в данном случае повысить потребление кислорода за счет увеличения объема мышечных волокон с высокими окислительными возможностями, то есть, прежде всего, волокон типа I (медленных мышечных волокон).

Данные рассуждения позволили предположить, что ПАНО должен зависеть, главным образом, от суммарного объема в мышце волокон I типа, то есть медленных мышечных волокон.

Выводы:

  1. При работе малой мышечной массы (например: разгибание ноги в коленном суставе) возрастание нагрузки всегда ведет к пропорциональному увеличению кровенаполнения работающей мышцы и потребления кислорода организмом. В случае работы большой мышечной массы (например: работа на велоэргометре) у части людей при достижении максимальной мощности потребление кислорода организмом и кровенаполнение работающей мышцы выходят на плато, причем периферические механизмы не влияют на этот эффект.
  2. При работе большой мышечной массы мощность, на которой происходит снижение кровенаполнения работающей мышцы, совпадает с порогом анаэробного обмена, однако у половины тренированных людей интенсификация анаэробного гликолиза происходит без снижения кровенаполнения.
  3. У высококвалифицированных спортсменов, тренирующих выносливость, обнаружена отрицательная корреляция (r=-0,83; p<0,05) между ПАНО, определяющим уровень тренированности, и концентрацией лактата в крови при максимальной аэробной нагрузке. У 20% высококвалифицированных спортсменов порог анаэробного обмена практически совпадает с максимальной мощностью, достигнутой в тесте. Соответственно, потребление кислорода достигает максимума при низкой концентрации лактата в крови (5,6±0,4 ммоль/л).
  4. У спортсменов, тренирующих выносливость, при работе большой мышечной массы (например: работа на велоэргометре) потребление кислорода на уровне ПАНО коррелирует (r=0,7; p<0,05) с объемом волокон I типа (медленных) в основной рабочей мышце и не зависит от объема волокон II типа (быстрых).
  5. Низкоинтенсивная силовая тренировка (50% от максимальной произвольной силы) без расслабления приводит к увеличению размеров мышечных волокон преимущественно I типа (медленных). Таким образом, эта методика тренировки дает возможность дальнейшего увеличения аэробной работоспособности (потребления кислорода на уровне ПАНО) у спортсменов с низкой концентрацией лактата при максимальной аэробной нагрузке.

Источник информации: по материалам Попова Д.В. (2007)

Биологические механизмы повышения аэробной и анаэробной производительности спортсменов

Профессор, А.З. Колчинская, Украинский государственный университет физического воспитания и спорта, Киев

Происходящее в процессе многолетней спортивной тренировки повышение аэробной производительности и ее интегрального показателя - максимального потребления кислорода (МПК) широко освещено в литературе. Известно также, хотя и в меньшей степени, о возможности повышения МПК в результате воздействия на организм спортсменов атмосферы с пониженным парциальным давлением кислорода.

Биологические механизмы повышения аэробной производительности организма и в одном и в другом случае одни и те же: развитие функциональной системы дыхания в процессе адаптации к гипоксии как в процессе разных видов спортивной тренировки, так и во время пребывания спортсменов в атмосфере с пониженным парциальным давлением кислорода в горах: барокамерах, в условиях нормобарической (прерывистой и интервальной) гипоксической тренировки.

В процессе спортивной тренировки организм спортсмена постоянно испытывает разные степени гипоксии нагрузки , во время дыхания воздухом с пониженным парциальным давлением кислорода на организм спортсмена оказывает действие гипоксическая гипоксия.

Адаптация к гипоксии нагрузки (гиперметаболической гипоксии) - особому, выделенному и детально описанному нами типу гипоксических состояний, осуществляется в процессе повседневной мышечной деятельности, и особенно в процессе спортивной тренировки.

Содержание термина "гипоксия нагрузки" не тождественно тому, что подразумевается под распространенным в литературе термином "двигательная гипоксия". Двигательная гипоксия, по А.Б. Гандельсману и др., проявляется лишь при нагрузках субмаксимальной и максимальной интенсивности, когда развиваются артериальная гипоксемия и тканевая гипоксия с повышенным содержанием лактата в крови и сниженным pH. Термин же "гипоксия нагрузки" характеризует гипоксические состояния при усилении функции любых тканей и органов, повышающем их потребность в кислороде, при мышечной деятельности любой интенсивности.

Генез гипоксии нагрузки следующий. Активизация функции требует дополнительных затрат энергии, кислородный запрос клеток, органов и организма при этом повышается, скорость же доставки кислорода к работающим клеткам из-за временной задержки усиления притока крови увеличивается еще не настолько, чтобы удовлетворить повысившуюся потребность в кислороде. Работающие мышцы извлекают кислород из притекающей крови, что значительно обедняет венозную кровь: содержание кислорода в ней, ее насыщение кислородом и pO2 резко снижаются, проявляется венозная гипоксемия - первый признак гипоксии нагрузки.

После того как резерв кислорода крови исчерпывается, запасы кислорода мобилизуются из миоглобина, а когда и их недостаточно, для ресинтеза АТФ используется креатин-фосфат, энергия анаэробного гликолиза, образуются лактат, недоокисленные продукты, снижается pH, проявляются все последствия тканевой гипоксии, и лишь после того как скорость доставки кислорода начнет возрастать, включается процесс окислительного фосфорилирования, длительно обеспечивающий работающие мышцы необходимой энергией.

Степень гипоксии нагрузки, во время которой прежде всего мобилизуются кислородные резервы, а по их исчерпании используется энергия анаэробных источников, - скрытая (латентная) гипоксия нагрузки, подробно описана нами с Н.И. Волковым .

При продолжающейся работе в результате активизации компенсаторных механизмов, обеспечивающих усиление доставки кислорода и ее соответствие кислородному запросу работающих мышц, гипоксия нагрузки становится компенсированной. Это вторая степень гипоксии нагрузки. Основным признаком компенсированной гипоксии нагрузки служат венозная гипоксемия и снижение pO2 в тканях, однако его уровень все еще превышает критический для мышечной ткани, и поэтому возможность увеличения потребления кислорода мышечными волокнами неограниченна. Деятельность компенсаторных механизмов и кислородные режимы организма (КРО) при этой степени гипоксии нагрузки отличаются высокой эффективностью и экономичностью. Усиление легочной вентиляции обеспечивается не только учащением дыхания, но и значительным увеличением дыхательного объема (ДО), увеличивается отношение альвеолярной вентиляции к минутному объему дыхания (АВ/ МОД), снижается вентиляционный эквивалент (ВЭ - объем вентилируемого в легких воздуха, необходимый для утилизации 1л O2) и повышается кислородный эффект каждого дыхательного цикла (мл O2 потребляемые организмом за один дыхательный цикл). Увеличивается минутный объем крови (МОК), выбрасываемой сердцем в сосудистое русло в результате учащения сердечных сокращений и благодаря увеличению систолического объема (СО), увеличивается артерио-венозное различие по кислороду, снижается гемодинамический эквивалент (ГЭ - объем циркулирующей крови, обеспечивающий потребление 1л O2), растет объем потребленного О2 за один сердечный цикл (кислородный пульс - КП). Поддержание уровня pO2, превышающего критический для мышечной ткани, обеспечивается многократно возрастающей скоростью поэтапной доставки кислорода в результате увеличения МОД и МОК, перераспределения кровотока, при котором работающие мышцы могут получать около 80% объема циркулирующей крови и доставляемого кровью кислорода.

Если интенсивность мышечной работы растет и скорость поэтапной доставки кислорода не может быть увеличена так, чтобы полностью обеспечить потребность организма в кислороде, включается дополнительный источник энергии - анаэробный гликолиз (что происходит на так называемом пороге анаэробного обмена). Повышенный приток к легким венозной крови со значительно более низким, чем в покое, содержанием кислорода и повышенным количеством CO2 не успевает полностью насытиться кислородом. Кроме того, из-за шунтирования крови в легких определенная часть смешанной венозной крови с низким содержанием в ней O2 примешивается к артериализированной в легких крови; содержание O2 насыщение артериальной крови кислородом и ее pO2 снижаются, т.е. начинает проявляться артериальная гипоксемия. Все же при гипоксии нагрузки этой степени - субкомпенсированной гипоксии -основное количество энергии для выполнения работы поставляют аэробные процессы, и работа может продолжаться. При субкомпенсированной гипоксии нагрузки дальнейшее увеличение МОД обусловливается преимущественно учащением дыхания; ДО и кислородный эффект дыхательного цикла уже не увеличиваются, ВЭ начинает снижаться. Отмечаются отсутствие увеличения систолического объема и более выраженный прирост ЧСС. В крови начинает повышаться содержание лактата.

В случае большей интенсивности мышечной деятельности организм уже не может обеспечить соответствия поэтапной доставки кислорода его кислородному запросу. Проявляется четвертая степень гипоксии нагрузки - декомпенсированная гипоксия. ДО и СО уменьшаются, а ЧД и ЧСС достигают максимальных величин, кислородные режимы организма становятся менее эффективными и экономичными, вентиляционный эквивалент растет, а кислородный эффект каждого дыхательного цикла снижается, уменьшается и кислородный эффект каждого сердечного цикла. Растущий кислородный долг, накопление кислых продуктов, повреждающее действие последствий тканевой гипоксии на клеточные мембраны и органеллы клеток заставляют прекращать работу.

Таким образом, исследования гипоксических состояний при мышечной деятельности позволили различать следующие типы гипоксии нагрузки: латентную, компенсированную, субкомпенсированную и декомпенсированную .

Развитие гипоксической гипоксии, проявляющейся при дыхании воздухом с пониженным pO2 начинается с того, что снижается pO2 в альвеолярном воздухе и артериальной крови (рис. 1), возбуждаются хеморецепторы аортальной зоны и сонных артерий. Это приводит к компенсаторному усилению легочной вентиляции и кровотока, перераспределению кровотока - увеличению кровотока в мозге, сердечной мышце, легких и его ограничению в мышцах, коже и др., происходит рефлекторный выброс эритроцитов в кровяное русло из их депо.

Рис. 1. Степени гмпоксической гипоксии: I - скрытая; II - компенсированная; III - субкомпенсированная; IV - декомпенсированная. Штрихом обозначены каскады pO2, сплошной линией - каскады поэтапной скорости доставки O2 (qO2). I - вдыхаемый воздух, А - альвеолярный воздух, а - артериальная, V - смешанная венозная кровь

Увеличивается кислородная емкость крови, что с усилением кровотока (если pO2 не снижается далее) обеспечивает поддержание скорости доставки кислорода на уровне, близком к имеющемуся при нормальном содержании кислорода и pO2 во вдыхаемом воздухе. Ткани в этом случае еще не страдают от недостатка кислорода.

Если же напряжение кислорода в артериальной крови опускается ниже критического уровня (50 мм рт.ст. для артериальной крови), отдельные участки тканей, расположенные в условиях худшего снабжения кислородом, в которых pO2 снижается до уровней ниже критических для тканей, начинают испытывать тканевую гипоксию. При еще большем снижении напряжения кислорода в артериальной крови и тканях кислородный голод будут испытывать все большие участки тканей, проявится повреждающее действие последствий тканевой гипоксии: увеличения количества водородных ионов в тканях, резкого снижения pH, накопления молочной кислоты, продуктов перекисного окисления липидов. Повреждающее действие последствий тканевой гипоксии на клеточные мембраны, митохондрии и другие органоиды клеток, на эндотелий капилляров и прекапилляров влечет за собой нарушение функции клеток, тканей, органов и физиологических систем, особенно функции высших отделов головного мозга.

Гипоксические состояния организма при гипоксической гипоксии зависят как от уровня снижения pO2 в воздухе, длительности его воздействия на организм, так и от компенсаторных возможностей организма, зависящих от пола, возраста, состояния здоровья и степени тренированности организма, акклиматизации в горных условиях. Взаимодействие указанных факторов определяет степень гипоксической гипоксии в каждом отдельном случае. Мы различаем гипоксическую гипоксию 1-й степени - скрытую (латентную), 2-й -компенсированную, 3-й-субкомпенсированную, 4-й - декомпенсированную и 5-й - терминальную гипоксию. Объективные критерии для каждой из этих степеней приведены на рис. 1.

Для объективной оценки гипоксических состояний пользуются характеристикой кислородных режимов организма (КРО) - строго управляемых в организме сочетаний двух групп взаимосвязанных кислородных параметров: скорости поэтапной доставки кислорода (qO2); из окружающего воздуха в легкие (qiO2), альвеолы (qAO2), артериальной кровью к тканям (qaO2) и смешанной венозной кровью к легким (qvO2) и pO2 на важнейших этапах массопереноса кислорода в организме (см. рис. 1). Учитывают эффективность КРО (определяемую по отношению скорости доставки O2 к скорости его потребления), экономичность КРО (оцениваемую по величине функциональных затрат, необходимых для обеспечения организма одним литром O2: по величине вентиляционного и гемодинамического эквивалентов, по кислородным эффектам дыхательного и сердечного циклов) .

Адаптация к гипоксической гипоксии, в результате которой происходят улучшение самочувствия, повышение работоспособности, экономизация деятельности функциональной системы дыхания и кислородных режимов организма, осуществляется тогда, когда снижение pO2 во вдыхаемом воздухе вызывает усиление деятельности физиологических механизмов регуляции дыхания и кровообращения и еще не вызывает появления больших участков тканевой гипоксии, т.е. при гипоксии субкомпенсированной. Увеличение дыхательного объема и диффузионной поверхности легких в сочетании с усилением кровотока обеспечивает повышение диффузионной способности легких и поддержание скорости доставки кислорода артериальной кровью к тканям, особенно к головному мозгу и сердечной мышце.

Рис. 2. Изменения содержания: А - гемоглобина в крови волейболистов, легкоатлетов, Б - МПК велосипедистов, В -предельной мощности гребцов на байдарке, Г - ЧСС гребцов-академистов в эргометрическом тесте, Д - времени прохождения контрольной дистанции на байдарке в гребном канале (дистанция - 2 км), Е - потребление кислорода у гребцов на байдарке во время гребли, Ж - их кислородного долга, 3 - содержание лактата до курса ИГТ на предельной нагрузке и после него на такой же нагрузке и на нагрузке большей мощности, после курса ИГТ, проведенного на фоне планового тренировочного процесса спортсменов. Незаштрихованный столбец - до, заштрихованный - после курса комбинированной тренировки

При субкомпенсированной гипоксии процесс адаптации к гипоксии осуществляется на уровне как отдельных органов и физиологических систем (системы внешнего дыхания, кровообращения, дыхательной функции крови), так и на тканевом уровне - в тканях и клетках. В результате действия последствий тканевой гипоксии (снижения pH, накопления водородных ионов, лактата, повреждения клеточных мембран и ионных насосов, митохондрий и др.) нарушается функция мышечных элементов микрососудов, они расширяются, что улучшает кровоснабжение тканей и способствует поддержанию снабжения клеток и их митохондрий кислородом. Кроме того, по данным исследований последних лет, проведенных рядом авторов, при тканевой гипоксии выделяется особый индуцируемый гипоксией фактор (HIF-1), который ускоряет транскрипцию генов синтеза белков и, следовательно, обеспечивает синтез дыхательных ферментов, что повышает утилизацию кислорода в клетках.

Таким образом, компенсированная и особенно субкомпенсированная гипоксическая гипоксия способствуют развитию всей сложной, управляемой центральной нервной, симпатической и эндокринной системами, функциональной системы дыхания (ФСД). Эта система обслуживается органами внешнего дыхания, кровообращения, кроветворения, дыхательной функцией крови, тканевыми механизмами, т.е. физиологическими системами, обеспечивающими весь процесс массопереноса кислорода и углекислого газа в организме, утилизацию кислорода в тканях.

Развитие ФСД в процессе адаптации к гипоксии обеспечивает повышение ее резервов, аэробной производительности и ее интегрального показателя - МПК. Мобилизация механизмов анаэробного гликолиза при кислородной недостаточности, и при гипоксической гипоксии, и при гипоксии нагрузки приводит к повышению анаэробной производительности.

Гипоксия нагрузки - постоянный спутник человека (и животных) на протяжении всего жизненного цикла (за исключением периодов вынужденной акинезии). Роль адаптации к ней в развитии функциональной системы дыхания, аэробной и анаэробной производительности несомненна. Однако эффект адаптации к гипоксии нагрузки ощущается через длительные отрезки времени. Обследования спортсменов высокой квалификации (членов сборных команд СССР и Украины по велоспорту, гребле и другим видам спорта), проведенные нами с сотрудниками во время спортивных сборов в равнинных условиях, показали, что достоверный прирост МПК за три недели спортивной тренировки отсутствует .

Адаптация к гипоксической гипоксии способствует повышению аэробной производительности в более короткие сроки. Известно, что трехнедельное либо месячное пребывание в горах может повысить МПК спортсменов высокой квалификации на 3-6%. Значительно лучшие результаты дает нормобарическая интервальная гипоксическая тренировка, проводимая на фоне планового тренировочного процесса спортсменов в свободное от тренировки время . В результате такой трехнедельной комбинированной тренировки и в подготовительном и в начале соревновательного периодов МПК и работоспособность достоверно повышаются, увеличиваются отношение альвеолярной вентиляции к минутному объему дыхания, коэффициент утилизации кислорода в легких и артерио-венозное различие по кислороду, содержание гемоглобина в крови, кислородная емкость крови и содержание кислорода в артериальной крови. При уменьшении ЧСС скорость доставки кислорода к мышцам возрастает, порог анаэробного обмена сдвигается в сторону больших нагрузок. Все это обеспечивает повышение предельных нагрузок и объема выполненной работы, что зарегистрировано во время как эргометрического тестирования, так и прохождения соревновательных дистанций (рис. 2).

Эффективность использования интервальной гипоксической тренировки (ИГТ) доказана нами в гребном спорте (с П.А. Радзиевским, А.В. Бака-нычевым, М.П. Закусило, Н.В. Полищук, Н.В. Югай, Т.В. Шпак, М.И. Слободянюк, Л.А. Тайболиной, И.Д. Дмитриевой, И.Н. Рябоконь, И.Н. Хоточкиной), в легкой атлетике (с Л.Г. Шахлиной и И.И. Макаревич), в волейболе (с М.П. Закусило), в велосипедном спорте (с Л.В. Елизаровой) .

Эффективность использования ИГТ доказана Н.И. Волковым и его учениками в спорте высоких достижений - конькобежном спорте (С.Ф. Сокунова), при подготовке футболистов высокой квалификации (У. Б. М. Дардури), И.Ж. Булгаковой, Н.И. Волковым и их учениками при подготовке пловцов (С.В. Топорищев, В.В. Смирнов, Б. Хосни, Т. Фомиченко, Н. Ковалев, В.Р. Соломатин, Ю.М. Штернберг и др.) .

Как известно, принцип интервальности успешно применяется не только в гипоксической тренировке: с 60-х годов он эффективно используется в спортивной тренировке. Применяются Фрейдбургский метод, "миоглобиновая", "анаэробная" и "аэробная" интервальная спортивные тренировки .

Физиологические механизмы эффективности интервальной спортивной тренировки (ИСТ) и ИГТ имеют много общего. И в ИСТ и в ИГТ в качестве "тренирующего средства" используются адаптация к гипоксии, активизация компенсаторных механизмов, направленных на предотвращение развития тканевой гипоксии и ее вредных последствий.

Важно учитывать, что повышенная активность компенсаторных механизмов проявляется не только во время гипоксичес-кого воздействия, но и во время нормокси-ческих периодов отдыха - интервалов. В интервальной спортивной тренировке рядом исследователей интервалам придавалось большое, даже ведущее, значение .

Мы обратили внимание на проявления активности компенсаторных воздействий во время нормоксических интервалов в сеансе интервальной гипоксической тренировки. Нами вместе с М.П. Закусило во время сеанса ИГТ определялись МОД и МОК, дыхательный объем, ударный сердечный выброс, насыщение артериальной крови кислородом, потребление кислорода организмом. Полученные данные (рис. 3) позволяют заключить, что если гипоксическая тренировка проводилась с использованием газовых смесей, вдыхание которых вызывает гипоксию 3-й степени - субкомпенсирован-ную, то: 1. Во время нормоксических интервалов сохраняются еще повышенные МОД и МОК. 2. От серии к серии (до 4-й) МОД и МОК увеличиваются, хотя дальнейшего снижения насыщения артериальной крови не наблюдается. 3. Растет и потребление кислорода. 4. Повышенный МОК во время интервалов обеспечивает высокую скорость доставки не только кислорода, но и субстратов для синтеза белков при pO2 в тканях выше критического. Можно предположить, что синтезу способствует и ускорение транскрипции генов на РНК под влиянием HIF-1. Интервальное гипоксическое воздействие

Рис. 3. Изменения МОД, МОК, ЧСС и насыщения артериальной крови кислородом (SaO2) при вдыхании воздуха с 12% кислорода с интервалами дыхания комнатным воздухом: а - заштрихованная часть - гипоксическое воздействие; б - незаштрихованная -нормокснчес-кий интервал (дыхание воздухом с 20,9% кислорода) в серии продолжительностью 10 мин

оказывается более эффективным методом адаптации к гипоксии, чем непрерывное. Адаптация к гипоксии в этом случае осуществляется в более короткие сроки. Проведенные исследования позволили нам обосновать режимы ИГТ: содержание O2 в гипоксической смеси, длительность гипоксических воздействия и интервала в каждой серии, количества серий в сеансе.

Накопленный в настоящее время опыт позволяет заключить, что интервальное гипоксическое воздействие оказывается более эффективным методом адаптации к гипоксии, чем непрерывное. Адаптация к гипоксии в этом случае осуществляется в более короткие сроки.

Нормобарическая ИГТ имеет и ряд других преимуществ перед тренировкой в горах и в барокамерах. При этом виде гипоксической тренировки не нарушается нормальный ход тренировочного процесса спортсменов, так как ИГТ проводится в свободное от спортивной тренировки время. На нее требуется не более часа в день, во время сеанса ИГТ спортсмен может полностью расслабиться, а после сеанса ИГТ не чувствуется усталости и плановая спортивная тренировка проходит без ущерба. В горах же работоспособность значительно снижается, поскольку суммируется действие гипоксической гипоксии и гипоксии нагрузки и выраженная тканевая гипоксия проявляется при меньшем снижении pO2 в воздухе и при физической нагрузке меньшей интенсивности, тренировочный процесс нарушается. Кроме того, для ряда видов спорта отсутствует возможность тренировки специальной работоспособности, технических навыков и тактики.

Барокамерная тренировка имеет свои недостатки: возможны микробаротравмы, во время декомпрессии и компрессии появляются неприятные ощущения, сеанс занимает много времени.

Примененный нами комбинированный метод гипоксической тренировки, сочетающий эффекты ИГТ и ИСТ, проводимых каждая в свое время, обеспечивает адаптацию к двум разделенным по времени действия типам гипоксии: к гипоксической гипоксии и к гипоксии нагрузки. Усиление кровотока в мозге и сердечной мышце во время действия гипоксической гипоксии способствует лучшей капилляризации мозга и сердца, лучшему снабжению их энергетическими субстратами, а гипоксия нагрузки, сопровождающая спортивную тренировку, обусловливает преимущественное кровоснабжение и приток строительных материалов к работающим мышцам.

Таким образом, комбинированный метод гипоксической тренировки обладает большим конструктивным эффектом, чем каждый из методов, взятый в отдельности, о чем свидетельствуют хорошие результаты использования комбинированного метода.

Список литературы

1. Булгакова Н.Ж., Волков Н.И., Соломатин В.Р. и др. Особенности воздействия непрерывного и интервального методов тренировки на организм юных пловцов //Теория и практика физической культуры, 1981, № 4, с. 31-33.

2. Волков Н.И., Булгакова Н.Ж., Карецкая Н.Н. и др. Импульсная гипоксия и интервальная тренировка //Hypoxia Med. J., 1994, № 2, р. 64-65.

3. Волков Н.И., Карасев А.В., Хосни М. Теория и практика интервальной тренировки в спорте. - М.: Военная академия им. Ф.Э. Дзержинского, 1995. -196с.

4. Волков Н.И., Колчинская А.З. "Скрытая" (латентная) гипоксия нагрузки //Hypoxia Med. J., 1993, № 3, р. 30-35.

5. Вторичная тканевая гипоксия /Под ред. А.З. Колчинской. - Киев: Наукова думка, 1983. - 255 с.

6. Гипоксия нагрузки, математическое моделирование, прогнозирование и коррекция /Отв. ред. А.З. Колчинская. - Киев: АН УССР, 1990. - 101 с.

7. Интервальная гипоксическая тренировка. Эффективность, механизмы действия /Отв. ред. А.З. Колчинская. - Киев: ММиС Украины, 1992. - 106 с.

8. Колчинская А.З. Кислородный режим организма ребенка и подростка. - Киев: Наукова думка, 1973. - 326 с.

9. Колчинская А.З. О классификации гипоксических состояний //Патол. физиол. и эксперим. терапия, 1981, вып. 4, с. 3-10.

10. Колчинская А.З. Использование ступенчатой адаптации к гипоксии в медицине /Вестник Российской Академии Наук, 1997, № 5, с. 12-19.

11. Филиппов М.М. Процесс массопереноса респираторных газов при мышечной деятельности. Степени гипоксии нагрузки //Вторичная тканевая гипоксия /Под ред. А.З. Колчинской. - Киев: Наукова думка, 1983, с. 197-216.

12. Bakanychev A., Zakusilo M., Kolchinskaya A. et al. Interval hypoxic training //Hypoxia Med. J., 1993. Edit. in chief A.Z. Kolchinskaya, N 1, p. 27-37, N 2, p. 28-40.

13. Kolchinskaya A.Z. La hypoxie de charge: un des mecanismes physilogiques les plus importants dans 1"adaptation de 1"organism a des charges d"entraine-ment et de competition elevee //L"adaptation des spor-tifs aux charges d"entrainement et de competitiont. Ed.: Platonov V.N. Paris, 1990.

Для подготовки данной работы были использованы материалы с сайта http://lib.sportedu.ru


Аэробная производительность - это способность организма выполнять работу, обеспечивая энергетические расходы за счёт кислорода, поглощаемого непосредственно во время работы.

Потребление кислорода при физической работе возрастает по мере увеличения тяжести и продолжительности работы. Но для каждого человека существует предел, выше которого потребление кислорода увеличиваться не может. Наибольшее количество кислорода, ĸᴏᴛᴏᴩᴏᴇ организм может потребить за 1 минуту при предельно тяжелой для него работе - принято называть максимальным потреблением кислорода (МПК). Эта работа должна длиться не менее 3 минут, т.к. человек может достичь своего максимального потребления кислорода (МПК) только к третьей минуте.

MПK - является показателœем аэробной производительности. МПК можно определить, задавая стандартную нагрузку на велоэргометре. Зная величину нагрузки и подсчитав ЧСС, можно с помощью специальной номограммы определить уровень МПК. У незанимающихся спортом величина МПК составляет 35 - 45 мл на 1 кг веса, а у спортсменов, исходя из специализации, - 50-90 мл/кᴦ. Наибольшего уровня МПК достигает у спортсменов, занимающихся видами спорта͵ которые требуют большой аэробной выносливости, такими как бег на длинные дистанции, лыжные гонки, конькобежный спорт (длинные дистанции) и плавание (длинные дистанции). В этих видах спорта результат на 60-80% зависит от уровня аэробной производительности, ᴛ.ᴇ. чем выше уровень МПК, тем выше спортивный результат.

Уровень МПК в свою очередь зависит от возможностей двух функциональных систем: 1) системы, доставляющей кислород, включающей дыхательную и сердечно-сосудистую системы; 2) системы, утилизирующей кислород (обеспечивающей усвоение кислорода тканями).

Кислородный запрос.

Для выполнения любой работы, а также для нейтрализации продуктов обмена и восстановления энергетических запасов необходим кислород. Количество кислорода, ĸᴏᴛᴏᴩᴏᴇ требуется для выполнения определœенной работы - принято называть кислородным запросом.

Различают суммарный и минутный кислородный запрос.

Суммарный кислородный запрос - это количество кислорода, крайне важно е для совершения всœей работы (к примеру, для того, чтобы пробежать всю дистанцию).

Минутный кислородный запрос - это количество кислорода, требующееся для выполнения данной работы в каждую конкретную минуту.

Минутный кислородный запрос зависит от мощности выполняемой работы. Чем выше мощность, тем больше минутный запрос. Наибольшей величины он достигает на коротких дистанциях. К примеру, при беге на 800 м он составляет 12-15 л/мин, а при марафонском - 3-4 л/мин.

Суммарный запрос тем больше, чем больше время работы. При беге на 800 м он составляет 25-30 л, а при марафонском - 450-500 л.

При этом МПК даже спортсменов международного класса не превышает 6-6,5 л/мин и должна быть достигнуто только к третьей минуте. Как организм в таких условиях обеспечивает выполнение работы, к примеру, с минутными кислородным запросом в 40 л/мин (бег на 100 м)? В таких случаях работа идет в безкислородных условиях и обеспечивается за счёт анаэробных источников.

Анаэробная производительность.

Анаэробная производительность - это способность организма выполнять работу в условиях недостатка кислорода, обеспечивая энергетические расходы за счёт анаэробных источников.

Работа обеспечивается непосредственно запасами АТФ в мышцах, а также за счёт анаэробного ресинтеза АТФ с использованием КрФ и анаэробного расщепления глюкозы (гликолиза).

Для восстановления запасов АТФ и КрФ, а также для нейтрализации молочной кислоты, образовавшейся в результате гликолиза необходим кислород. Но эти окислительные процессы могут идти уже после окончания работы. Для выполнения любой работы требуется кислород, только на коротких дистанциях организм работает в долг, откладывая окислительные процессы на восстановительный период.

Количество кислорода, ĸᴏᴛᴏᴩᴏᴇ требуется для окисления продуктов обмена, образовавшихся при физической работе, принято называть - кислородным долгом.

Кислородный долг можно также определить как разницу между кислородным запросом и тем количеством кислорода, ĸᴏᴛᴏᴩᴏᴇ организм потребляет во время работы.

Чем выше минутный кислородный запрос и меньше время работы, тем больше кислородный долг в процентном отношении к суммарному запросу. Наибольший кислородный долг будет на дистанциях 60 и 100 м, где минутный запрос составляет около 40 л/мин, а время работы исчисляется секундами. Кислородный долг на этих дистанциях будет около 98% от запроса.

На средних дистанциях (800 – 3000м) увеличивается время работы, снижается ее мощность, а значит. возрастает потребление кислорода во время выполнения работы. В результате кислородный долг в процентном отношении к запросу уменьшается до 70 – 85%, но в связи со значительным увеличением суммарного кислородного запроса на этих дистанциях его абсолютная величина, измеряемая в литрах увеличивается.

Показателœем анаэробной производительности является - максимальный

кислородный долᴦ.

Максимальный кислородный долг -это максимально возможное накопление продуктов анаэробного обмена, требующих окисления, при котором организм еще способен выполнять работу. Чем выше тренированность, тем больше максимальный кислородный долᴦ. Так, к примеру, у людей, не занимающихся спортом, максимальный кислородный долг составляет, 4-5 л, а у спортсменов-спринтеров высокого класса может достигать 10-20 л.

В кислородном долге различают 2 фракции (части): алактатную и лактатную.

Алактатная фракция долга идет на восстановление запасов КрФ и АТФ в мышцах.

Лактатная фракция (лактаты - соли молочной кислоты) - большая часть кислородного долга. Она идет на ликвидацию молочной кислоты, накопившейся в мышцах. При окислении молочной кислоты образуются безвредные для организма вода и углекислый газ.

Алактатная фракция преобладает в физических упражнениях, длящихся не более 10с, когда работа идет в основном за счёт запасов АТФ и КрФ в мышцах. Лактатная преобладает при анаэробной работе большей длительности, когда интенсивно идут процессы анаэробного расщепления глюкозы (гликолиз) с образованием большого количества молочной кислоты.

Когда спортсмен работает в условиях кислородного долга, в организме накапливается большое количество продуктов обмена (прежде всœего молочной кислоты) и происходит сдвиг рН в кислую сторону. Чтобы спортсмен мог выполнять работу значительной мощности в таких условиях его ткани должны быть приспособлены к работе при недостатке кислорода и сдвиге рН. Это достигается тренировками на анаэробную выносливость (короткие скоростные упражнения с большой мощностью).

Уровень анаэробной производительности важен для спортсменов, работа

которых длится не более 7-8 минут. Чем больше время работы, тем меньше влияния на спортивный результат оказывают анаэробные возможности

Порог анаэробного обмена.

При интенсивной работе длящейся не менее 5-ти минут, наступает момент, когда организм не в состоянии обеспечить свои возрастающие потребности в кислороде. Поддержание достигнутой мощности работы и дальнейшее её увеличение обеспечивается за счёт анаэробных источников энергии.

Появление в организме первых признаков анаэробного ресинтеза АТФ - принято называть порогом анаэробного обмена (ПАНО). При этом анаэробные источники энергии включаются в ресинтез АТФ гораздо раньше, чем организм исчерпает свои возможности по обеспечению кислородом (ᴛ.ᴇ. раньше, чем достигнет своего МПК). Это является своеобразным ʼʼстраховочным механизмомʼʼ. Причем, чем менее тренированным является организм, тем раньше он начинает ʼʼстраховатьсяʼʼ.

ПAHO считается в процентах от МПК. У не тренированных людей первые признаки анаэробного ресинтеза АТФ (ПАНО) могут наблюдаться уже при достижении лишь 40% от уровня максимального потребления кислорода. У спортсменов исходя из квалификации ПАНО равен 50-80 % от МПК. Чем выше ПАНО, тем больше возможностей у организма выполнять тяжелую работу за счёт аэробных источников, более выгодных энергетически. По этой причине у спортсмена, имеющего высокий ПАНО (65% от МПК и выше), при прочих равных условиях будет более высокий результат на средних и длинных дистанциях.

Физиологическая характеристика физических упражнений.

Физиологическая классификация движений

(по Фарфелю B.C.).

I.Стереотипные (стандартные) движения.

1. Движения количественного значения.

Циклические.

Мощности работы: Виды локомоций:

‣‣‣ максимальная - движения, выполняемые ногами;

‣‣‣ субмаксимальная - движения, выполняемые при

‣‣‣ большая помощи рук.

‣‣‣ умеренная.

2. Движения качественного значения.

Виды спорта: Оцениваемые качества:

Спортивная и художественная - сила;

гимнастика; - быстрота;

Акробатика; -координация;

Фигурное катание; - равновесие;

Прыжки в воду; - гибкость;

Фристайл и т.д. - безопорность;

Выразительность.

Большая группа физических упражнений выполняется в строго постоянных условиях и характеризуется строгой постоянностью движений. Это группа стандартных (стереотипных) движений. Такие физические упражнения формируются по принципу двигательного динамического стереотипа.

При выполнении нестандартных движений отсутствует жесткий стереотип. В видах спорта с нестандартными движениями существуют определœенные стереотипы - приемы защиты и нападения, но в базе движений лежит реагирование на постоянно изменяющиеся условия. Действия спортсмена связаны с решением задач конкретного момента.